A300905 a(n) = n^sigma(n) mod sigma(n)^n.
0, 8, 17, 1978, 73, 0, 1570497, 1009588832, 7390478182, 1391503283200, 166394893969, 151448237549551616, 762517292682713, 18685202394240778240, 814227337406354049, 187036938412352867328077, 947615093635545799201, 2095989269871299377743863001
Offset: 1
Keywords
Examples
For n = 6; a(6) = 0 because 6^sigma(6) mod sigma(6)^6 = 6^12 mod 12^6 = 2176782336 mod 2985984 = 0.
Programs
-
GAP
List([1..20],n->PowerModInt(n,Sigma(n),Sigma(n)^n))); # Muniru A Asiru, Mar 20 2018
-
Magma
[n^SumOfDivisors(n) mod SumOfDivisors(n)^n: n in[1..20]];
-
Maple
with(numtheory): seq(n &^ sigma(n) mod sigma(n)^n,n=1..20); # Muniru A Asiru, Mar 20 2018
-
Mathematica
Array[With[{s = DivisorSigma[1, #]}, PowerMod[#, s, s^#]] &, 18] (* Michael De Vlieger, Mar 16 2018 *)
-
PARI
a(n) = my(s=sigma(n)); lift(Mod(n, s^n)^s); \\ Michel Marcus, Mar 17 2018
Comments