cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300906 Numbers k such that sigma(k)^k divides k^sigma(k).

Original entry on oeis.org

1, 6, 28, 84, 120, 364, 420, 496, 672, 840, 1080, 1320, 1488, 1782, 2280, 2760, 3276, 3360, 3472, 3480, 3720, 3780, 5640, 7080, 7392, 7440, 7560, 8128, 8736, 9240, 9480, 10416, 10920, 11880, 12400, 15456, 15960, 16368, 16380, 17880, 18360, 18600, 19320, 20520
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2018

Keywords

Comments

Numbers k such that A217872(k) divides A100879(k).
Numbers k such that A300905(k) = 0.
Corresponding quotients: 1, 729, 123476695691247935826229781856256, ...
m-perfect numbers k (A007691) are terms iff m divides k.

Examples

			6 is a term because 6^sigma(6) / sigma(6)^6 = 6^12 / 12^6 = 2176782336 / 2985984 = 729 (integer).
		

Crossrefs

Programs

  • GAP
    Filtered([1..30000],n->PowerModInt(n,Sigma(n),Sigma(n)^n)=0); # Muniru A Asiru, Mar 20 2018
    
  • Magma
    [n: n in[1..20000]  | n^SumOfDivisors(n) mod SumOfDivisors(n)^n eq 0];
    
  • Maple
    with(numtheory):
    select(n->n &^ sigma(n) mod sigma(n)^n =0, [`$`(1..30000)]); # Muniru A Asiru, Mar 20 2018
  • PARI
    isok(n) = my(s = sigma(n)); Mod(n, s^n)^s == 0; \\ Michel Marcus, Mar 23 2018