cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301554 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma_0(k)).

Original entry on oeis.org

1, 2, 6, 14, 32, 66, 138, 266, 512, 948, 1730, 3074, 5408, 9306, 15854, 26594, 44150, 72378, 117620, 189074, 301516, 476518, 747514, 1163470, 1798920, 2762040, 4215194, 6393196, 9642596, 14462518, 21581386, 32040562, 47345342, 69635866, 101974722, 148692638
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Comments

Convolution of A006171 and A107742.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[(&*[(1 + x^(j*k))/(1-x^(j*k)): j in [1..(m+2)]]): k in [1..(m+2)]]))); // G. C. Greubel, Oct 29 2018
  • Maple
    with(numtheory): seq(coeff(series(mul(((1+x^k)/(1-x^k))^sigma[0](k),k=1..n),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 29 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1,m, prod(j=1,m+2, (1+x^(j*k))/(1-x^(j*k)) ))) \\ G. C. Greubel, Oct 29 2018
    

Formula

G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))/(1 - x^(i*j)). - Ilya Gutkovskiy, May 23 2018
Conjecture: log(a(n)) ~ Pi * sqrt(n*log(n)/2). - Vaclav Kotesovec, Sep 03 2018