cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A320908 Expansion of Product_{k>=1} theta_4(x^k), where theta_4() is the Jacobi theta function.

Original entry on oeis.org

1, -2, -2, 2, 4, 6, -6, -2, -8, -12, 2, 6, 20, 14, 22, -2, -14, -34, -20, -42, -48, 34, 10, 50, 48, 80, 82, 52, -16, -30, -142, -130, -138, -226, -54, -70, 80, 190, 310, 238, 392, 178, 178, 86, -40, -148, -582, -506, -546, -680, -656, -126, -336, 262, 428, 930
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Comments

Convolution of A288007 and A288098.
Convolution inverse of A301554.

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(&*[(1-x^(j*k))/(1+x^(j*k)):j in [1..2*m]]): k in [1..2*m]]) )); // G. C. Greubel, Oct 29 2018
  • Maple
    with(numtheory): seq(coeff(series(mul(((1-x^k)/(1+x^k))^tau(k),k=1..n),x,n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 55; CoefficientList[Series[Product[EllipticTheta[4, 0, x^k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 55; CoefficientList[Series[Product[((1 - x^k)/(1 + x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 55; CoefficientList[Series[Exp[-Sum[DivisorSigma[1, k] x^k (2 + x^k)/(k (1 - x^(2 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^k)/(1+x^k))^numdiv(k))) \\ Seiichi Manyama, Oct 25 2018
    

Formula

G.f.: Product_{i>=1, j>=1} (1 - x^(i*j))/(1 + x^(i*j)).
G.f.: Product_{k>=1} ((1 - x^k)/(1 + x^k))^d(k), where d(k) is the number of divisors of k (A000005).
G.f.: exp(-Sum_{k>=1} sigma(k)*x^k*(2 + x^k)/(k*(1 - x^(2*k)))).

A305050 Expansion of Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))/(1 - x^(i*j*k)).

Original entry on oeis.org

1, 2, 8, 20, 56, 128, 316, 684, 1532, 3192, 6704, 13436, 26984, 52352, 101316, 191320, 359334, 662292, 1213360, 2189380, 3925432, 6951592, 12231332, 21298452, 36856840, 63211164, 107765896, 182295468, 306625208, 512190992, 851011960, 1405199028, 2308629300, 3771593392
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2018

Keywords

Comments

Convolution of the sequences A174465 and A280473.

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + x^(i j k))/(1 - x^(i j k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A007425(k).

A318814 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma(k)/k).

Original entry on oeis.org

1, 2, 10, 64, 512, 4768, 53056, 645440, 8868352, 133302016, 2184149504, 38530160128, 733246566400, 14834910150656, 319778313883648, 7292507623063552, 175517505539538944, 4440588163825008640, 117969026857318678528, 3276703253565946855424, 95086071773832697348096
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 04 2018

Keywords

Comments

Convolution of A305127 and A318769.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

log(a(n)/n!) ~ Pi^2 * sqrt(n/6).

A318975 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^phi(k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 4, 10, 20, 42, 80, 154, 288, 522, 940, 1658, 2892, 4970, 8456, 14218, 23696, 39122, 64044, 104042, 167732, 268602, 427248, 675482, 1061632, 1659298, 2579676, 3990418, 6142892, 9412906, 14360136, 21814698, 33004704, 49739426, 74677924, 111713658
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A299069 and A061255.

Examples

			a(n) ~ exp(3^(4/3) * (7*Zeta(3))^(1/3) * n^(2/3) / (2*Pi^(2/3)) - 1/6) * A^2 * (7*Zeta(3))^(1/9) / (sqrt(2) * 3^(7/18) * Pi^(8/9) * n^(11/18)), where A is the Glaisher-Kinkelin constant A074962.
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^EulerPhi[k], {k, 1, nmax}], {x, 0, nmax}], x]

A318976 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(phi(k)/k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 6, 32, 196, 1512, 13384, 135872, 1545744, 19441952, 268386784, 4018603008, 65021744704, 1127284876928, 20880206388864, 410781080941568, 8561002328678656, 188224613741879808, 4355496092560324096, 105752112730661347328, 2688539359466319184896
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A088009 and A000262.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(EulerPhi[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
    nmax = 20; CoefficientList[Series[E^(x*(2 + x)/(1 - x^2)), {x, 0, nmax}], x] * Range[0, nmax]!

Formula

E.g.f.: exp(x*(2 + x)/(1 - x^2)).
a(n) ~ 2^(-3/4) * 3^(1/4) * exp(sqrt(6*n) - n - 1/2) * n^(n - 1/4).

A318977 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(tau(k)/k), where tau is A000005.

Original entry on oeis.org

1, 2, 8, 44, 292, 2296, 21472, 221168, 2554544, 32617952, 452957056, 6788855872, 110098330048, 1900192498304, 34971968379392, 683452436531456, 14097619892177152, 306168410773570048, 6998327049216231424, 167369475021548506112, 4187842602663179396096
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A318696 and A318695.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(DivisorSigma[0, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

A320967 Expansion of Product_{k>0} theta_3(q^k)/theta_4(q^k), where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, 4, 12, 36, 92, 220, 508, 1108, 2332, 4776, 9492, 18420, 35036, 65324, 119708, 216044, 384204, 674236, 1168968, 2003460, 3397300, 5704148, 9487740, 15642676, 25577900, 41495032, 66817812, 106837112, 169677372, 267755836, 419948980, 654799316, 1015276412, 1565765892
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2018

Keywords

Crossrefs

Self-convolution of A320968.

Programs

  • Mathematica
    With[{nmax=50}, CoefficientList[Series[Product[EllipticTheta[3, 0, q^k]/EllipticTheta[4, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* G. C. Greubel, Oct 29 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(k=1,m+2, eta(q^(2*k))^6/(eta(q^k)^4* eta(q^(4*k))^2) )) \\ G. C. Greubel, Oct 29 2018

Formula

Expansion of Product_{k>0} eta(q^(2*k))^6 / (eta(q^k)^4*eta(q^(4*k))^2).

A327048 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) / ((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k))).

Original entry on oeis.org

1, 2, 6, 14, 30, 60, 120, 220, 402, 710, 1224, 2064, 3438, 5596, 9012, 14304, 22422, 34740, 53330, 80960, 121908, 181976, 269484, 396072, 578232, 838258, 1207896, 1730058, 2463900, 3490020, 4918572, 6897012, 9626610, 13375776, 18504852, 25494456, 34985530
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Comments

Convolution of A327045 and A327042.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) / ((1-x^k) * (1-x^(2*k)) * (1-x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 11 * exp(sqrt(11*n/6)*Pi) / (2^(13/2)*sqrt(3)*n^(3/2)).

A327049 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)) / ((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k))).

Original entry on oeis.org

1, 2, 6, 14, 32, 64, 132, 248, 466, 838, 1488, 2560, 4370, 7272, 11988, 19424, 31160, 49280, 77294, 119780, 184164, 280408, 423808, 635136, 945628, 1397398, 2052536, 2995210, 4346416, 6270272, 8999668, 12848584, 18257122, 25817760, 36349600, 50952064, 71131448
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Comments

Convolution of A327046 and A327043.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k))/((1-x^k) * (1-x^(2*k)) * (1-x^(3*k)) * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 5^(5/2) * exp(5*Pi*sqrt(n/3)/2) / (2^(17/2)*3^(3/4)*n^(7/4)).

A327050 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)) * (1 + x^(5*k)) / ((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(5*k))).

Original entry on oeis.org

1, 2, 6, 14, 32, 66, 136, 260, 494, 902, 1620, 2832, 4890, 8260, 13792, 22664, 36824, 59060, 93814, 147364, 229490, 354052, 541916, 822736, 1240292, 1856246, 2760368, 4078522, 5990900, 8749052, 12708920, 18363656, 26404386, 37783040, 53820120, 76324576
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 16 2019

Keywords

Comments

Convolution of A327047 and A327044.
In general, for fixed m>=1, if g.f. = Product_{k>=1} (Product_{j=1..m} (1 + x^(j*k)) / (1 - x^(j*k))), then a(n) ~ sqrt(Gamma(m+1)) * HarmonicNumber(m)^((m+1)/4) * exp(Pi*sqrt(HarmonicNumber(m)*n)) / (2^(3*(m+1)/2) * n^((m+3)/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k)) * (1+x^(5*k)) / ((1-x^k) * (1-x^(2*k)) * (1-x^(3*k)) * (1-x^(4*k)) * (1-x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x]
    With[{nn=50,xk=x^(k Range[5])},CoefficientList[Series[Product[Times@@(1+xk)/Times@@(1-xk),{k,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Jul 23 2023 *)

Formula

a(n) ~ 137^(3/2) * exp(sqrt(137*n/15)*Pi/2) / (15*2^(21/2)*n^2).
Showing 1-10 of 19 results. Next