A320968 Expansion of (Product_{k>0} theta_3(q^k)/theta_4(q^k))^(1/2), where theta_3() and theta_4() are the Jacobi theta functions.
1, 2, 4, 10, 18, 34, 64, 110, 188, 320, 524, 846, 1358, 2130, 3308, 5102, 7750, 11674, 17468, 25862, 38022, 55558, 80532, 116034, 166284, 236784, 335416, 472868, 663146, 925762, 1286920, 1780962, 2454792, 3370806, 4610656, 6284090, 8535868, 11554834, 15591564
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[1/Product[EllipticTheta[4, 0, q^(2*k - 1)], {k, 1, 50}], {q, 0, 80}], q] (* G. C. Greubel, Oct 29 2018 *)
-
PARI
q='q+O('q^80); Vec(prod(k=1,50, eta(q^(2*k))^3/(eta(q^k)^2* eta(q^(4*k))) )) \\ G. C. Greubel, Oct 29 2018
Formula
a(n) = (-1)^n * A320098(n).
Expansion of Product_{k>0} eta(q^(2*k))^3 / (eta(q^k)^2*eta(q^(4*k))).
Expansion of Product_{k>0} 1/theta_4(q^(2*k-1)).
Comments