cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A320992 Expansion of (Product_{k>0} theta_4(q^k)/theta_3(q^k))^(1/2), where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, -2, 0, -2, 6, -2, 4, -6, 8, -16, 8, -14, 26, -26, 24, -30, 58, -50, 60, -78, 90, -118, 104, -138, 192, -224, 204, -268, 366, -354, 412, -474, 596, -694, 724, -818, 1052, -1162, 1176, -1470, 1756, -1918, 2052, -2434, 2814, -3168, 3396, -3806, 4674, -5124, 5396
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2018

Keywords

Crossrefs

Convolution inverse of A320968.

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[Sqrt[EllipticTheta[4, 0, x^k] / EllipticTheta[3, 0, x^k]], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 26 2018 *)

Formula

a(n) = (-1)^n * A320078(n).
Expansion of Product_{k>0} (eta(q^k)^2*eta(q^(4*k))) / eta(q^(2*k))^3.
Expansion of Product_{k>0} theta_4(q^(2*k-1)).
a(n) ~ (-1)^n * (log(2))^(1/4) * exp(Pi*sqrt(n*log(2)/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Oct 26 2018

A320967 Expansion of Product_{k>0} theta_3(q^k)/theta_4(q^k), where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, 4, 12, 36, 92, 220, 508, 1108, 2332, 4776, 9492, 18420, 35036, 65324, 119708, 216044, 384204, 674236, 1168968, 2003460, 3397300, 5704148, 9487740, 15642676, 25577900, 41495032, 66817812, 106837112, 169677372, 267755836, 419948980, 654799316, 1015276412, 1565765892
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2018

Keywords

Crossrefs

Self-convolution of A320968.

Programs

  • Mathematica
    With[{nmax=50}, CoefficientList[Series[Product[EllipticTheta[3, 0, q^k]/EllipticTheta[4, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* G. C. Greubel, Oct 29 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(k=1,m+2, eta(q^(2*k))^6/(eta(q^k)^4* eta(q^(4*k))^2) )) \\ G. C. Greubel, Oct 29 2018

Formula

Expansion of Product_{k>0} eta(q^(2*k))^6 / (eta(q^k)^4*eta(q^(4*k))^2).

A308288 Expansion of Product_{i>=1, j>=1} theta_3(x^(i*j))/theta_4(x^(i*j)), where theta_() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 16, 56, 172, 496, 1360, 3528, 8824, 21344, 50048, 114360, 255336, 557888, 1195952, 2519264, 5221076, 10660512, 21467904, 42674520, 83812560, 162753584, 312689168, 594740456, 1120498048, 2092059800, 3872731232, 7110830376, 12955269304, 23428775520
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2019

Keywords

Comments

Convolution of the sequences A305050 and A308286.

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[Product[EllipticTheta[3, 0, x^(i j)]/EllipticTheta[4, 0, x^(i j)], {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Product[(EllipticTheta[3, 0, x^k]/EllipticTheta[4, 0, x^k])^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (theta_3(x^k)/theta_4(x^k))^tau(k), where tau = number of divisors (A000005).
G.f.: Product_{i>=1, j>=1} (Sum_{k=-oo..+oo} x^(i*j*k^2))/(Sum_{k=-oo..+oo} (-1)^k*x^(i*j*k^2)).
G.f.: Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))^4/(1 + x^(2*i*j*k))^2.
G.f.: Product_{k>=1} (1 + x^k)^(4*tau_3(k))/(1 + x^(2*k))^(2*tau_3(k)), where tau_3 = A007425.
Showing 1-3 of 3 results.