A301775 Number of odd chordless cycles in the (2n+1)-web graph.
0, 12, 30, 74, 200, 522, 1362, 3572, 9350, 24474, 64080, 167762, 439202, 1149852, 3010350, 7881194, 20633240, 54018522, 141422322, 370248452, 969323030, 2537720634, 6643838880, 17393796002, 45537549122, 119218851372, 312119004990, 817138163594, 2139295485800
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Chordless Cycle
- Eric Weisstein's World of Mathematics, Web Graph
- Index entries for linear recurrences with constant coefficients, signature (2,1,2,-1).
Crossrefs
Cf. A301774.
Programs
-
Magma
I:=[0,12,30,74,200]; [n le 5 select I[n] else 2*Self(n-1)+Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 27 2018
-
Mathematica
Rest @ CoefficientList[Series[2 x^2*(6 + 3 x + x^2 - x^3)/((1 - 3 x + x^2) (1 + x + x^2)), {x, 0, 29}], x] (* Michael De Vlieger, Mar 26 2018 *) Join[{0}, LinearRecurrence[{2, 1, 2, -1}, {12, 30, 74, 200}, 30]] (* Vincenzo Librandi, Mar 27 2018 *) Join[{0}, Table[LucasL[2 n + 1] + Cos[2 n Pi/3] - Sqrt[3] Sin[2 n Pi/3], {n, 2, 20}]] (* Eric W. Weisstein, Mar 27 2018 *)
-
PARI
Vec(2*(6 + 3*x + x^2 - x^3)/((1 - 3*x + x^2)*(1 + x + x^2)) + O(x^30)) \\ Andrew Howroyd, Mar 26 2018
Formula
From Andrew Howroyd, Mar 26 2018: (Start)
a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) for n > 5.
G.f.: 2*x^2*(6 + 3*x + x^2 - x^3)/((1 - 3*x + x^2)*(1 + x + x^2)).
(End)
a(n) = A002878(n) + cos(2*n*Pi/3) - sqrt(3)*sin(2*n*Pi/3) for n > 1. - Eric W. Weisstein, Mar 27 2018
Extensions
Terms a(10) and beyond from Andrew Howroyd, Mar 26 2018