A110931
Numbers k such that 2*k^k - 1 is prime.
Original entry on oeis.org
2, 3, 357, 1400, 205731, 296598
Offset: 1
3 is in the sequence since 2*3^3 - 1 = 53 is prime.
Numbers k such that b*k^k - b + 1 is prime: this sequence (b=2),
A301521 (b=4),
A302123 (b=6).
-
[n: n in [0..500] | IsPrime(2*n^n-1)]; // Vincenzo Librandi, Nov 01 2014
-
Select[Range[1000], PrimeQ[2*#^# - 1] &] (* Vaclav Kotesovec, Oct 31 2014 *)
-
for(n=1,2000,1;if(isprime(2*n^n-1),print(n))) \\ Ray G. Opao, Oct 23 2014
A302134
Numbers k such that 9*k^k - 8 is prime.
Original entry on oeis.org
7, 9, 11, 353, 7133
Offset: 1
A302136
Numbers k such that 10*k^k - 9 is prime.
Original entry on oeis.org
2, 4, 14, 80, 1133, 4120
Offset: 1
A302124
Primes of form 6*k^k - 5.
Original entry on oeis.org
19, 157, 1531, 4941253, 100663291, 2324522929, 774660240526566167037696179607987213236023100283073
Offset: 1
Primes of form b*k^k - b + 1:
A301870 (b=4), this sequence (b=6).
A302132
Numbers k such that 3*k^k - 2 is prime.
Original entry on oeis.org
A302133
Numbers k such that 8*k^k - 7 is prime.
Original entry on oeis.org
10, 800, 1266, 1395
Offset: 1
Showing 1-6 of 6 results.
Comments