cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053447 Multiplicative order of 4 mod 2n+1.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 2, 4, 9, 3, 11, 10, 9, 14, 5, 5, 6, 18, 6, 10, 7, 6, 23, 21, 4, 26, 10, 9, 29, 30, 3, 6, 33, 11, 35, 9, 10, 15, 39, 27, 41, 4, 14, 11, 6, 5, 18, 24, 15, 50, 51, 6, 53, 18, 18, 14, 22, 6, 12, 55, 10, 50, 7, 7, 65, 9, 18, 34, 69, 23, 30, 14, 21, 74, 15, 12, 10, 26
Offset: 0

Views

Author

Keywords

Comments

For a set S = {x, y} (x < y), let f(S) = {2x, y - x}, then a(n) is the smallest k > 0 such that f_k({1, 2n}) = {1, 2n} where f_k(S) denotes iteration for k times. E.g., for n = 3 we have: f_1({1, 6}) = f({1, 6}) = {2, 5}, f_2({1, 6}) = f({2, 5}) = {3, 4}, f_3({1, 6}) = f({3, 4}) = {1, 6}. - Jianing Song, Jan 27 2019
From Jianing Song, Dec 24 2022: (Start)
Let psi = A002322. For n > 0, we have 4^(psi(2*n+1)/2) = 2^psi(2*n+1) == 1 (mod 2*n+1), so a(n) divides psi(2*n+1)/2 => a(n) <= psi(2*n+1)/2 <= n. a(n) = psi(2*n+1)/2 if and only if one of the two following conditions holds: (a) the multiplicative order of 2 modulo 2*n+1 is psi(2*n+1); (b) the multiplicative order of 2 modulo 2*n+1 is psi(2*n+1)/2, and psi(2*n+1) == 2 (mod 4).
Additionally, a(n) = n if and only if 2*n+1 = p is a prime, and one of the two following conditions holds: (a) 2 is a primitive root modulo p; (b) p == 3 (mod 4), and the multiplicative order of 2 modulo p is (p-1)/2 (in this case, we have p == 7 (mod 8) since 2 is a quadratic residue modulo p). Such primes p are listed in A216371. (End)

Crossrefs

Programs

  • GAP
    List([0..80],n->OrderMod(4,2*n+1)); # Muniru A Asiru, Feb 25 2019
  • Magma
    [1] cat [Modorder(4, 2*n+1): n in [1..100]]; // Vincenzo Librandi, Apr 01 2014
    
  • Mathematica
    Table[ MultiplicativeOrder[4, n], {n, 1, 160, 2}] (* Robert G. Wilson v, Apr 05 2011 *)
  • PARI
    a(n) = znorder(Mod(4, 2*n+1)); \\ Michel Marcus, Feb 05 2015
    

Formula

Let b = A002326, then a(n) = b(n) if b(n) is odd, otherwise a(n) = b(n)/2. - Joerg Arndt, Feb 03 2019

A105876 Primes for which -4 is a primitive root.

Original entry on oeis.org

3, 7, 11, 19, 23, 47, 59, 67, 71, 79, 83, 103, 107, 131, 139, 163, 167, 179, 191, 199, 211, 227, 239, 263, 271, 311, 347, 359, 367, 379, 383, 419, 443, 463, 467, 479, 487, 491, 503, 523, 547, 563, 587, 599, 607, 619, 647, 659, 719, 743, 751, 787, 823, 827, 839, 859, 863
Offset: 1

Views

Author

N. J. A. Sloane, Apr 24 2005

Keywords

Comments

Also, primes for which -16 is a primitive root. For proof see following comments from Michael Somos, Aug 07 2009:
Let p = 8*t + 3 be prime. It is well-known that 2 is a primitive root.
We will use the obvious fact that if a primitive root is a power of another element, then that other element is also a primitive root. So
-1 == 2^(4*t+1) (mod p) because 2 is primitive root.
-2 == 2^(4*t+2) == 4^(2*t+1) (mod p) obvious
2 == (-4)^(2*t+1) (mod p) obvious, therefore -4 is also primitive root.
2 == 2^(8*t+3) (mod p) obviously works not just for 2
4 == 2^(8*t+4) == 16^(2*t+1) (mod p) obvious
-4 == (-16)^(2*t+1) (mod p) obvious, therefore -16 is also primitive root.
The case where p = 8*t + 7 is similar.
From Jianing Song, Dec 24 2022: (Start)
Equivalently, primes p == 3 (mod 4) such that the multiplicative order of 4 modulo p is (p-1)/2 (a subsequence of A216371).
Proof of equivalence: let ord(a,k) be the multiplicative of a modulo k. First we notice that all terms are congruent to 3 modulo 4, since -4 is a quadratic residue modulo p if p == 1 (mod 4). If ord(4,p) = (p-1)/2. Note that (p-1)/2 is odd, so it is coprime to ord(-1,p) = 2. As a result, ord(-4,p) = ((p-1)/2) * 2 = p-1. Conversely, If ord(-4,p) = p-1, we must have ord(4,p) = (p-1)/2 by noting that ord(-4,p) <= lcm(2,ord(4,p)).
Also primes p such that the multiplicative order of 16 modulo p is (p-1)/2. Proof: note that ord(16,p) = ord(-4,p)/gcd(ord(-4,p),2). If ord(-4,p) = p-1, then ord(16,p) = (p-1)/2. Conversely, if ord(16,p) = (p-1)/2, then ord(-4,p) = p-1, since otherwise ord(-4,p) = (p-1)/2 is odd, which is impossible since that -4 is not a quadratic residue modulo a prime p == 3 (mod 4).
{(a(n)-1)/2} is the sequence of indices of fixed points of A302141.
An odd prime p is a term if and only if p == 3 (mod 4) and the multiplicative order of 2 modulo p is p-1 or (p-1)/2 (p-1 if p == 3 (mod 8), (p-1)/2 if p == 7 (mod 8)).
It seems that a(n) = 2*A163778(n-1) + 1 for n >= 2. (End)

Crossrefs

Cf. A114564, A302141, A163778. A216371 is a supersequence.

Programs

  • Mathematica
    pr=-4; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* OR *)
    a[p_, q_]:=Sum[2 Cos[2^n Pi/((2 q+1)(2 p+1))],{n,1,2 q p}]
    2 Select[Range[500],Rationalize[N[a[#,2],20]]==1 &]+1
    (* Gerry Martens, Apr 28 2015 *)
  • PARI
    is(n)=isprime(n) && n>2 && znorder(Mod(-4,n))==n-1 \\ Charles R Greathouse IV, Apr 30 2015

Extensions

Edited by N. J. A. Sloane, Aug 08 2009

A372801 Order of 16 modulo the n-th prime: least k such that prime(n) divides 16^k-1.

Original entry on oeis.org

1, 1, 3, 5, 3, 2, 9, 11, 7, 5, 9, 5, 7, 23, 13, 29, 15, 33, 35, 9, 39, 41, 11, 12, 25, 51, 53, 9, 7, 7, 65, 17, 69, 37, 15, 13, 81, 83, 43, 89, 45, 95, 24, 49, 99, 105, 37, 113, 19, 29, 119, 6, 25, 4, 131, 67, 135, 23, 35, 47, 73, 51, 155, 39, 79, 15, 21, 173, 87, 22, 179
Offset: 2

Views

Author

Jianing Song, May 13 2024

Keywords

Comments

a(n) is the period of the expansion of 1/prime(n) in hexadecimal.

Crossrefs

Cf. A302141 (order of 16 mod 2n+1).

Programs

  • PARI
    a(n) = znorder(Mod(16, prime(n))).

Formula

a(n) = A014664(n)/gcd(4, A014664(n)) = A082654(n)/gcd(2, A082654(n)).
a(n) <= (prime(n) - 1)/2.
Showing 1-3 of 3 results.