cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A302650 Number of minimal total dominating sets in the n-barbell graph.

Original entry on oeis.org

1, 1, 6, 28, 85, 201, 406, 736, 1233, 1945, 2926, 4236, 5941, 8113, 10830, 14176, 18241, 23121, 28918, 35740, 43701, 52921, 63526, 75648, 89425, 105001, 122526, 142156, 164053, 188385, 215326, 245056, 277761, 313633, 352870, 395676, 442261, 492841, 547638, 606880
Offset: 1

Views

Author

Eric W. Weisstein, Apr 11 2018

Keywords

Comments

Extended to a(1)-a(2) using the formula/recurrence.
The minimal total dominating sets have size either 2 or 4. There is only one minimum total dominating set, which consists of the two vertices of the connecting 2-path. - Andrew Howroyd, Jun 12 2025

Crossrefs

Cf. A302761.

Programs

  • Magma
    [(2 + (n - 3)*n*(n + 1)/4)*n : n in [1..50]]; // Wesley Ivan Hurt, Apr 25 2023
  • Mathematica
    Table[(2 + (n - 3) n (n + 1)/4) n, {n, 20}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 1, 6, 28, 85}, 20]
    CoefficientList[Series[(-1 + 4 x - 11 x^2 + 2 x^3)/(-1 + x)^5, {x, 0, 20}], x]

Formula

a(n) = (2 + (n - 3)*n*(n + 1)/4)*n.
G.f.: x*(-1 + 4*x - 11*x^2 + 2*x^3)/(-1 + x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: exp(x)*x*(4 - 2*x + 4*x^2 + x^3)/4. - Stefano Spezia, Sep 06 2023
a(n) = binomial(n,2)^2 - (n-1)^2 + 1. - Andrew Howroyd, Jun 12 2025
Showing 1-1 of 1 results.