A302652 Number of minimum total dominating sets in the n-antiprism graph.
2, 6, 12, 24, 80, 48, 7, 16, 237, 40, 154, 1344, 208, 7, 30, 1136, 68, 396, 6688, 480, 7, 44, 3151, 96, 750, 20800, 864, 7, 58, 6730, 124, 1216, 50160, 1360, 7, 72, 12321, 152, 1794, 103040, 1968, 7, 86, 20372, 180, 2484, 189504, 2688, 7, 100, 31331, 208, 3286
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Antiprism Graph.
- Eric Weisstein's World of Mathematics, Minimum Total Dominating Set.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,5,0,0,0,0,0,0,-10,0,0,0,0,0,0,10,0,0,0,0,0,0,-5,0,0,0,0,0,0,1).
Programs
-
Mathematica
Table[Piecewise[{{7, Mod[n, 7] == 0}, {2 n, Mod[n, 7] == 1}, {n (37 + 138 n + 32 n^2)/147, Mod[n, 7] == 2}, {4 n, Mod[n, 7] == 3}, {2 n (5 + 4 n)/7, Mod[n, 7] == 4}, {(8 n (2 + n) (9 + n) (1 + 4 n))/1029, Mod[n, 7] == 5}, {8 n (1 + n)/7, Mod[n, 7] == 6}}], {n, 200}] LinearRecurrence[{0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1}, {2, 6, 12, 24, 80, 48, 7, 16, 237, 40, 154, 1344, 208, 7, 30, 1136, 68, 396, 6688, 480, 7, 44, 3151, 96, 750, 20800, 864, 7, 58, 6730, 124, 1216, 50160, 1360, 7}, 200] Rest @ CoefficientList[Series[7 x^7/(1 - x^7) - 16 x^6 (3 + 4 x^7)/(-1 + x^7)^3 + 4 x^3 (3 + 4 x^7)/(-1 + x^7)^2 + 2 x (1 + 6 x^7)/(-1 + x^7)^2 - 2 x^4 (12 + 41 x^7 + 3 x^14)/(-1 + x^7)^3 - 16 x^5 (5 + 59 x^7 + 48 x^14)/(-1 + x^7)^5 + x^2 (6 + 213 x^7 + 224 x^14 + 5 x^21)/(-1 + x^7)^4, {x, 0, 200}], x]
-
PARI
a(n)={[k->7, k->2*(7*k+1), k->(7*k+2)*(32*k^2+38*k+9)/3, k->4*(7*k+3), k->(7*k+4)*(8*k+6), k->(7*k+5)*(8*k+8)*(k+2)*(4*k+3)/3, k->8*(7*k+6)*(k+1)][1+n%7](n\7)} \\ Andrew Howroyd, Apr 18 2018
Formula
From Andrew Howroyd, Apr 18 2018: (Start)
a(n) = 5*a(n-7) - 10*a(n-14) + 10*a(n-21) - 5*a(n-28) + a(n-35).
a(7k) = 7, a(7k+1) = 2*(7*k+1), a(7k+2) = (7*k+2)*(32*k^2+38*k+9)/3, a(7k+3) = 4*(7*k+3), a(7k+4) = (7*k+4)*(8*k+6), a(7k+5) = (7*k+5)*(8*k+8)*(k+2)*(4*k+3)/3, a(7k+6) = 8*(7*k+6)*(k+1). (End)
Extensions
a(1)-a(2) and terms a(15) and beyond from Andrew Howroyd, Apr 18 2018
Comments