cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302766 a(n) = n*((4*n + 1)*(7*n - 4) + 15*n*(-1)^n)/48.

Original entry on oeis.org

0, 5, 11, 39, 60, 130, 175, 306, 384, 595, 715, 1025, 1196, 1624, 1855, 2420, 2720, 3441, 3819, 4715, 5180, 6270, 6831, 8134, 8800, 10335, 11115, 12901, 13804, 15860, 16895, 19240, 20416, 23069, 24395, 27375, 28860, 32186, 33839, 37530, 39360, 43435, 45451
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 12 2018

Keywords

Comments

Consider the partitions of n into two parts (p,q). Then 2*a(n) represents the total surface area of the family of rectangular prisms with dimensions p, q and (p + q).

Crossrefs

Programs

  • GAP
    List([1..50], n -> n*((4*n+1)*(7*n-4)+15*n*(-1)^n)/48); # Bruno Berselli, Apr 16 2018
  • Magma
    [Floor(n/2)*(6*n^2+3*n-1+3*(n-1)*Floor(n/2)-2*Floor(n/2)^2)/6 : n in [1..45]]; // Vincenzo Librandi, Apr 13 2018
    
  • Mathematica
    Table[Floor[n/2] (6 n^2 + 3 n - 1 + 3 (n - 1) Floor[n/2] - 2 Floor[n/2]^2)/6, {n, 50}]
  • PARI
    a(n) = floor(n/2)*(6*n^2+3*n-1+3*(n-1)*floor(n/2)-2*floor(n/2)^2)/6 \\ Felix Fröhlich, Apr 13 2018
    
  • PARI
    concat(0, Vec(x^2*(5 + 6*x + 13*x^2 + 3*x^3 + x^4) / ((1 - x)^4*(1 + x)^3) + O(x^60))) \\ Colin Barker, Apr 13 2018
    

Formula

a(n) = Sum_{i=1..floor(n/2)} n*i + n*(n-i) + i*(n-i).
a(n) = floor(n/2)*(6*n^2+3*n-1+3*(n-1)*floor(n/2)-2*floor(n/2)^2)/6.
From Colin Barker, Apr 13 2018: (Start)
G.f.: x^2*(5 + 6*x + 13*x^2 + 3*x^3 + x^4) / ((1 - x)^4*(1 + x)^3).
a(n) = (14*n^3 + 3*n^2 - 2*n) / 24 for n even.
a(n) = (14*n^3 - 12*n^2 - 2*n) / 24 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7. (End)