A302910
Determinant of n X n matrix whose main diagonal consists of the first n 6-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 5, 70, 1890, 83160, 5405400, 486486000, 57891834000, 8799558768000, 1663116607152000, 382516819644960000, 105192125402364000000, 34082248630365936000000, 12849007733647957872000000, 5576469356403213716448000000, 2760352331419590789641760000000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 6 1 1 1 1 1 ...
1 1 15 1 1 1 1 ...
1 1 1 28 1 1 1 ...
1 1 1 1 45 1 1 ...
1 1 1 1 1 66 1 ...
1 1 1 1 1 1 91 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5), this sequence (k=6),
A302911 (k=7),
A302912 (k=8),
A302913 (k=9),
A302914 (k=10).
Odd bisection of column k=1 of
A097591.
-
d:=(i,j)->`if`(i<>j,1,i*(2*i-1)):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..20);
-
nmax = 20; Table[Det[Table[If[i == j, i*(2*i - 1), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[(n + 1/2) * (2*n - 1)! / (3 * 2^(n - 2)), {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[Det[DiagonalMatrix[PolygonalNumber[6,Range[n]]]/.(0->1)],{n,20}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 23 2020 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(2*i-1)))); \\ Michel Marcus, Apr 16 2018
A302911
Determinant of n X n matrix whose main diagonal consists of the first n 7-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 6, 102, 3366, 181764, 14541120, 1614064320, 237267455040, 44606281547520, 10437869882119680, 2974792916404108800, 1014404384493801100800, 407790562566508042521600, 190845983281125763900108800, 102865984988526786742158643200
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 7 1 1 1 1 1 ...
1 1 18 1 1 1 1 ...
1 1 1 34 1 1 1 ...
1 1 1 1 55 1 1 ...
1 1 1 1 1 81 1 ...
1 1 1 1 1 1 112 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6), this sequence (k=7),
A302912 (k=8),
A302913 (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(5*i-3)/2):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..20);
-
nmax = 20; Table[Det[Table[If[i == j, i*(5*i - 3)/2, 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[5^(n + 1) * Gamma[n] * Gamma[n + 7/5] / (7 * Gamma[2/5] * 2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(5*i-3)/2))); \\ Michel Marcus, Apr 16 2018
A302912
Determinant of n X n matrix whose main diagonal consists of the first n 8-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 7, 140, 5460, 349440, 33196800, 4381977600, 766846080000, 171773521920000, 47924812615680000, 16294436289331200000, 6631835569757798400000, 3183281073483743232000000, 1779454120077412466688000000, 1145968453329853628547072000000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 8 1 1 1 1 1 ...
1 1 21 1 1 1 1 ...
1 1 1 40 1 1 1 ...
1 1 1 1 65 1 1 ...
1 1 1 1 1 96 1 ...
1 1 1 1 1 1 133 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7), this sequence (k=8),
A302913 (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(3*i-2)):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(3*i - 2), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[3^(n+1) * Gamma[n] * Gamma[n + 4/3] / (4*Gamma[1/3])], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)RecurrenceTable[{a[n+1] == a[n] * n * (3*n + 4), a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(3*i-2)))); \\ Michel Marcus, Apr 16 2018
A302913
Determinant of n X n matrix whose main diagonal consists of the first n 9-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 8, 184, 8280, 612720, 67399200, 10312077600, 2093351752800, 544271455728000, 176343951655872000, 69655860904069440000, 32947222207624845120000, 18384549991854663576960000, 11949957494705531325024000000, 8950518163534442962442976000000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 9 1 1 1 1 1 ...
1 1 24 1 1 1 1 ...
1 1 1 46 1 1 1 ...
1 1 1 1 75 1 1 ...
1 1 1 1 1 111 1 ...
1 1 1 1 1 1 154 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7),
A302912 (k=8), this sequence (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(7*i-5)/2):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(7*i-5)/2, 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
RecurrenceTable[{a[n+1] == a[n] * n*(7*n + 9)/2, a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[7^(n + 1) * Gamma[n] * Gamma[n + 9/7] / (9*Gamma[2/7]*2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(7*i-5)/2))); \\ Michel Marcus, Apr 16 2018
A302914
Determinant of n X n matrix whose main diagonal consists of the first n 10-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 9, 234, 11934, 1002456, 125307000, 21803418000, 5036589558000, 1490830509168000, 550116457882992000, 247552406047346400000, 133430746859519709600000, 84861955002654535305600000, 62882708656967010661449600000, 53701833193049827104877958400000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 10 1 1 1 1 1 ...
1 1 27 1 1 1 1 ...
1 1 1 52 1 1 1 ...
1 1 1 1 85 1 1 ...
1 1 1 1 1 126 1 ...
1 1 1 1 1 1 175 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7),
A302912 (k=8),
A302913 (k=9), this sequence (k=10).
Cf.
A007840 (permanent instead of determinant, for k=2).
-
d:=(i,j)->`if`(i<>j,1,i*(4*i-3)):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(4*i-3), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
RecurrenceTable[{a[n+1] == a[n] * n*(4*n + 5), a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[4^(n+1) * Gamma[n] * Gamma[n + 5/4] / (5*Gamma[1/4])], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(4*i-3)))); \\ Michel Marcus, Apr 16 2018
Showing 1-5 of 5 results.
Comments