A097591
Triangle read by rows: T(n,k) is the number of permutations of [n] with exactly k increasing runs of odd length.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 6, 0, 17, 0, 1, 0, 70, 0, 49, 0, 1, 90, 0, 500, 0, 129, 0, 1, 0, 1890, 0, 2828, 0, 321, 0, 1, 2520, 0, 23100, 0, 13930, 0, 769, 0, 1, 0, 83160, 0, 215292, 0, 62634, 0, 1793, 0, 1, 113400, 0, 1549800, 0, 1697430, 0, 264072, 0, 4097, 0, 1
Offset: 0
Triangle starts:
1;
0, 1;
1, 0, 1;
0, 5, 0, 1;
6, 0, 17, 0, 1;
0, 70, 0, 49, 0, 1;
90, 0, 500, 0, 129, 0, 1;
0, 1890, 0, 2828, 0, 321, 0, 1;
2520, 0, 23100, 0, 13930, 0, 769, 0, 1;
...
Row n has n+1 entries.
Example: T(3,1) = 5 because we have (123), 13(2), (2)13, 23(1) and (3)12 (the runs of odd length are shown between parentheses).
-
G:=t^2/(1-t*x-(1-t^2)*exp(-t*x)): Gser:=simplify(series(G,x=0,12)): P[0]:=1: for n from 1 to 11 do P[n]:=sort(expand(n!*coeff(Gser,x^n))) od: seq(seq(coeff(t*P[n],t^k),k=1..n+1),n=0..11);
# second Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, x^t, expand(
add(b(u+j-1, o-j, irem(t+1, 2)), j=1..o)+
add(b(u-j, o+j-1, 1)*x^t, j=1..u)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0, 1)):
seq(T(n), n=0..12); # Alois P. Heinz, Nov 19 2013
-
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, x^t, Expand[Sum[b[u+j-1, o-j, Mod[t+1, 2]], {j, 1, o}] + Sum[b[u-j, o+j-1, 1]*x^t, {j, 1, u}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
A302909
Determinant of n X n matrix whose main diagonal consists of the first n 5-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 4, 44, 924, 31416, 1570800, 108385200, 9863053200, 1144114171200, 164752440652800, 28831677114240000, 6025820516876160000, 1482351847151535360000, 423952628285339112960000, 139480414705876568163840000, 52305155514703713061440000000
Offset: 1
The 7 X 7 matrix (as below) has determinant 108385200.
1 1 1 1 1 1 1
1 5 1 1 1 1 1
1 1 12 1 1 1 1
1 1 1 22 1 1 1
1 1 1 1 35 1 1
1 1 1 1 1 51 1
1 1 1 1 1 1 70
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1), this sequence (k=5),
A302910 (k=6),
A302911 (k=7),
A302912 (k=8),
A302913 (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(3*i-1)/2):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..17);
-
Table[FullSimplify[Gamma[n] * Gamma[n + 5/3] * 3^(n + 1) / (5 * Gamma[2/3] * 2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
Module[{nn=20,pn5},pn5=PolygonalNumber[5,Range[nn]];Table[Det[DiagonalMatrix[Take[pn5,n]]/.(0->1)],{n,nn}]] (* Harvey P. Dale, Feb 07 2025 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(3*i-1)/2))); \\ Michel Marcus, Apr 16 2018
-
first(n) = my(res = vector(n)); res[1] = 1; for(i = 1, n - 1, res[i + 1] = res[i] * i*(3*i + 5)/2); res \\ David A. Corneth, Apr 16 2018
A302911
Determinant of n X n matrix whose main diagonal consists of the first n 7-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 6, 102, 3366, 181764, 14541120, 1614064320, 237267455040, 44606281547520, 10437869882119680, 2974792916404108800, 1014404384493801100800, 407790562566508042521600, 190845983281125763900108800, 102865984988526786742158643200
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 7 1 1 1 1 1 ...
1 1 18 1 1 1 1 ...
1 1 1 34 1 1 1 ...
1 1 1 1 55 1 1 ...
1 1 1 1 1 81 1 ...
1 1 1 1 1 1 112 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6), this sequence (k=7),
A302912 (k=8),
A302913 (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(5*i-3)/2):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..20);
-
nmax = 20; Table[Det[Table[If[i == j, i*(5*i - 3)/2, 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[5^(n + 1) * Gamma[n] * Gamma[n + 7/5] / (7 * Gamma[2/5] * 2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(5*i-3)/2))); \\ Michel Marcus, Apr 16 2018
A302912
Determinant of n X n matrix whose main diagonal consists of the first n 8-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 7, 140, 5460, 349440, 33196800, 4381977600, 766846080000, 171773521920000, 47924812615680000, 16294436289331200000, 6631835569757798400000, 3183281073483743232000000, 1779454120077412466688000000, 1145968453329853628547072000000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 8 1 1 1 1 1 ...
1 1 21 1 1 1 1 ...
1 1 1 40 1 1 1 ...
1 1 1 1 65 1 1 ...
1 1 1 1 1 96 1 ...
1 1 1 1 1 1 133 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7), this sequence (k=8),
A302913 (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(3*i-2)):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(3*i - 2), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[3^(n+1) * Gamma[n] * Gamma[n + 4/3] / (4*Gamma[1/3])], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)RecurrenceTable[{a[n+1] == a[n] * n * (3*n + 4), a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(3*i-2)))); \\ Michel Marcus, Apr 16 2018
A302913
Determinant of n X n matrix whose main diagonal consists of the first n 9-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 8, 184, 8280, 612720, 67399200, 10312077600, 2093351752800, 544271455728000, 176343951655872000, 69655860904069440000, 32947222207624845120000, 18384549991854663576960000, 11949957494705531325024000000, 8950518163534442962442976000000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 9 1 1 1 1 1 ...
1 1 24 1 1 1 1 ...
1 1 1 46 1 1 1 ...
1 1 1 1 75 1 1 ...
1 1 1 1 1 111 1 ...
1 1 1 1 1 1 154 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7),
A302912 (k=8), this sequence (k=9),
A302914 (k=10).
-
d:=(i,j)->`if`(i<>j,1,i*(7*i-5)/2):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(7*i-5)/2, 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
RecurrenceTable[{a[n+1] == a[n] * n*(7*n + 9)/2, a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[7^(n + 1) * Gamma[n] * Gamma[n + 9/7] / (9*Gamma[2/7]*2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(7*i-5)/2))); \\ Michel Marcus, Apr 16 2018
A302914
Determinant of n X n matrix whose main diagonal consists of the first n 10-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 9, 234, 11934, 1002456, 125307000, 21803418000, 5036589558000, 1490830509168000, 550116457882992000, 247552406047346400000, 133430746859519709600000, 84861955002654535305600000, 62882708656967010661449600000, 53701833193049827104877958400000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 10 1 1 1 1 1 ...
1 1 27 1 1 1 1 ...
1 1 1 52 1 1 1 ...
1 1 1 1 85 1 1 ...
1 1 1 1 1 126 1 ...
1 1 1 1 1 1 175 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7),
A302912 (k=8),
A302913 (k=9), this sequence (k=10).
Cf.
A007840 (permanent instead of determinant, for k=2).
-
d:=(i,j)->`if`(i<>j,1,i*(4*i-3)):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(4*i-3), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
RecurrenceTable[{a[n+1] == a[n] * n*(4*n + 5), a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[4^(n+1) * Gamma[n] * Gamma[n + 5/4] / (5*Gamma[1/4])], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(4*i-3)))); \\ Michel Marcus, Apr 16 2018
Showing 1-6 of 6 results.
Comments