A302910 Determinant of n X n matrix whose main diagonal consists of the first n 6-gonal numbers and all other elements are 1's.
1, 5, 70, 1890, 83160, 5405400, 486486000, 57891834000, 8799558768000, 1663116607152000, 382516819644960000, 105192125402364000000, 34082248630365936000000, 12849007733647957872000000, 5576469356403213716448000000, 2760352331419590789641760000000
Offset: 1
Keywords
Examples
The matrix begins: 1 1 1 1 1 1 1 ... 1 6 1 1 1 1 1 ... 1 1 15 1 1 1 1 ... 1 1 1 28 1 1 1 ... 1 1 1 1 45 1 1 ... 1 1 1 1 1 66 1 ... 1 1 1 1 1 1 91 ...
Crossrefs
Cf. A000384 (hexagonal numbers).
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's: A000142 (k=2), A067550 (k=3), A010791 (k=4, with offset 1), A302909 (k=5), this sequence (k=6), A302911 (k=7), A302912 (k=8), A302913 (k=9), A302914 (k=10).
Odd bisection of column k=1 of A097591.
Programs
-
Maple
d:=(i,j)->`if`(i<>j,1,i*(2*i-1)): seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..20);
-
Mathematica
nmax = 20; Table[Det[Table[If[i == j, i*(2*i - 1), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *) Table[(n + 1/2) * (2*n - 1)! / (3 * 2^(n - 2)), {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *) Table[Det[DiagonalMatrix[PolygonalNumber[6,Range[n]]]/.(0->1)],{n,20}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 23 2020 *)
-
PARI
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(2*i-1)))); \\ Michel Marcus, Apr 16 2018
Formula
a(n) = (n + 1/2) * (2*n-1)! / (3 * 2^(n-2)). - Vaclav Kotesovec, Apr 16 2018