A302946 Number of minimal (and minimum) total dominating sets in the 2n-crossed prism graph.
4, 36, 196, 1156, 6724, 39204, 228484, 1331716, 7761796, 45239076, 263672644, 1536796804, 8957108164, 52205852196, 304278004996, 1773462177796, 10336495061764, 60245508192804, 351136554095044, 2046573816377476, 11928306344169796, 69523264248641316
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Crossed Prism Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
- Eric Weisstein's World of Mathematics, Well-Covered Graph
- Index entries for linear recurrences with constant coefficients, signature (5,5,-1).
Programs
-
Mathematica
Table[2 (ChebyshevT[n, 3] + (-1)^n), {n, 20}] Table[4 (-1)^n ChebyshevT[n, I]^2, {n, 20}] LinearRecurrence[{5, 5, -1}, {4, 36, 196}, 20] CoefficientList[Series[-4 (-1 - 4 x + x^2)/(1 - 5 x - 5 x^2 + x^3), {x, 0, 20}], x]
-
PARI
Vec(4*(1 + 4*x - x^2)/((1 + x)*(1 - 6*x + x^2)) + O(x^30)) \\ Andrew Howroyd, Apr 16 2018
-
PARI
a(n) = 2*(polchebyshev(n,1,3) + (-1)^n); \\ Michel Marcus, Apr 17 2018
Formula
From Andrew Howroyd, Apr 16 2018: (Start)
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3).
G.f.: 4*x*(1 + 4*x - x^2)/((1 + x)*(1 - 6*x + x^2)).
a(n) = 2*(chebyshevT(n,3) + (-1)^n). - Eric W. Weisstein, Apr 17 2018
a(n) = 4*(-1)^n*chebyshevT(n,i)^2, where i is the imaginary unit. - Eric W. Weisstein, Apr 17 2018
E.g.f.: 2*(exp(-x) + exp(3*x)*cosh(2*sqrt(2)*x) - 2). - Stefano Spezia, Aug 03 2024
Extensions
a(1) and terms a(6) and beyond from Andrew Howroyd, Apr 16 2018
Comments