cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303120 Total area of all rectangles of size p X q such that p + q = n^2 and p <= q.

Original entry on oeis.org

0, 7, 60, 372, 1300, 4047, 9800, 22352, 44280, 84575, 147620, 251412, 402220, 632247, 949200, 1406272, 2011440, 2847447, 3920460, 5353300, 7147140, 9477567, 12336280, 15966672, 20345000, 25800047, 32284980, 40234292, 49568540, 60851175, 73958560, 89609472
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 18 2018

Keywords

Comments

Sum of all the products formed using the corresponding largest and smallest parts of each partition of n^2 into two parts. - Wesley Ivan Hurt, Mar 26 2019

Examples

			a(3) = 60; The rectangles are 8 X 1, 7 X 2, 6 X 3 and 5 X 4. The total area is then 8*1 + 7*2 + 6*3 + 5*4 = 60.
a(4) = 372; The rectangles are 15 X 1, 14 X 2, 13 X 3, 12 X 4, 11 X 5, 10 X 6, 9 X 7 and 8 X 8. The total area of the rectangles is then 15*1 + 14*2 + 13*3 + 12*4 + 11*5 + 10*6 + 9*7 + 8*8 = 372.
		

Crossrefs

Programs

  • GAP
    List([1..35],n->Sum([1..Int(n^2/2)],i->i*(n^2-i))); # Muniru A Asiru, Mar 15 2019
  • Magma
    [&+[i*(n^2-i): i in [0..Floor(n^2/2)]]: n in [1..35]]; // Vincenzo Librandi, Apr 19 2018
    
  • Maple
    A303120:=n->add(i*(n^2-i), i=1..floor(n^2/2)): seq(A303120(n), n=1..50); # Wesley Ivan Hurt, Mar 12 2019
  • Mathematica
    Table[Sum[i*(n^2 - i), {i, Floor[n^2/2]}], {n, 50}]
  • PARI
    a(n) = sum(i=1, n^2\2, i*(n^2-i)); \\ Michel Marcus, Mar 13 2019
    

Formula

a(n) = Sum_{i=1..floor(n^2/2)} i * (n^2 - i).
Conjectures from Colin Barker, Apr 19 2018 and Mar 19 2019: (Start)
G.f.: x^2*(7 + 46*x + 224*x^2 + 386*x^3 + 594*x^4 + 386*x^5 + 224*x^6 + 46*x^7 + 7*x^8) / ((1 - x)^7*(1 + x)^5).
a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12) for n > 12.
a(n) = (n^2*(-4 + 3*(1+(-1)^n)*n^2 + 4*n^4)) / 48.
(End)