cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303299 Generalized 22-gonal (or icosidigonal) numbers: m*(10*m - 9) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 19, 22, 58, 63, 117, 124, 196, 205, 295, 306, 414, 427, 553, 568, 712, 729, 891, 910, 1090, 1111, 1309, 1332, 1548, 1573, 1807, 1834, 2086, 2115, 2385, 2416, 2704, 2737, 3043, 3078, 3402, 3439, 3781, 3820, 4180, 4221, 4599, 4642, 5038, 5083, 5497, 5544, 5976, 6025, 6475, 6526, 6994, 7047, 7533, 7588
Offset: 0

Views

Author

Omar E. Pol, Jun 23 2018

Keywords

Comments

Partial sums of A317318. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(20*n-19))*(1 + x^(20*n-1))*(1 - x^(20*n)) = 1 + x + x^19 + x^22 + x^58 + .... - Peter Bala, Dec 10 2020

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), this sequence (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Maple
    a:= n-> (m-> m*(10*m-9))(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 23 2018
  • Mathematica
    CoefficientList[ Series[-x (x^2 + 18x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 19, 22, 58}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
    nn=30; Sort[Table[n (10 n - 9), {n, -nn, nn}]] (* Vincenzo Librandi, Jul 29 2018 *)
  • PARI
    a(n) = n++; my(m = (-1) ^ n * (n >> 1)); m * (10 * m - 9) \\ David A. Corneth, Jun 23 2018
    
  • PARI
    concat(0, Vec(x*(1 + 18*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jun 23 2018

Formula

From Colin Barker, Jun 23 2018: (Start)
G.f.: x*(1 + 18*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = (5*n^2 + 9*n)/2 for n even.
a(n) = (5*n^2 + n - 4)/2 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = (10 + 9*sqrt(5+2*sqrt(5))*Pi)/81. - Amiram Eldar, Mar 01 2022