A303360
Expansion of Product_{n>=1} ((1 + 4*x^n)/(1 - 4*x^n))^(1/4).
Original entry on oeis.org
1, 2, 4, 18, 34, 166, 384, 1902, 4756, 24022, 64284, 321542, 899658, 4455690, 12888944, 63185250, 187513426, 910880550, 2759413788, 13295839638, 40967821494, 195979968882, 612569599440, 2911592648458, 9213101043936, 43538337410474, 139246245625364
Offset: 0
Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)):
A015128 (b=0),
A303346 (b=1), this sequence (b=2).
-
seq(coeff(series(mul(((1+4*x^k)/(1-4*x^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Apr 22 2018
-
nmax = 30; CoefficientList[Series[Product[((1 + 4*x^k)/(1 - 4*x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4*x^k)/(1-4*x^k))^(1/4)))
A303391
Expansion of Product_{k>=1} (1 + 4*x^k)/(1 - 4*x^k).
Original entry on oeis.org
1, 8, 40, 200, 872, 3720, 15400, 62920, 254440, 1024648, 4112680, 16483400, 66000360, 264150920, 1056903080, 4228272200, 16914393832, 67660396040, 270647139240, 1082600410440, 4330424811880, 17321748357640, 69287088965800, 277148557003720, 1108594618342760
Offset: 0
-
N:= 50: # for a(0)..a(N)
G:= mul((1+4*x^k)/(1-4*x^k),k=1..N):
S:= series(G,x,N+1):
seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 13 2019
-
nmax = 25; CoefficientList[Series[Product[(1+4*x^k)/(1-4*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A303347
Expansion of Product_{n>=1} (1 - 4*x^n)^(1/2).
Original entry on oeis.org
1, -2, -4, -2, -6, -6, -56, -158, -612, -2070, -7228, -25238, -89646, -319466, -1150168, -4164978, -15177718, -55592614, -204617788, -756314982, -2806456898, -10450497682, -39040372248, -146273912858, -549533738952, -2069680656234, -7812908945556
Offset: 0
Expansion of Product_{n>=1} (1 - b^2*x^n)^(1/b):
A010815 (b=1), this sequence (b=2),
A303348 (b=3).
-
seq(coeff(series(mul((1-4*x^k)^(1/2), k = 1..n), x, n+1), x, n), n=0..40); # Muniru A Asiru, Apr 22 2018
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-4*x^k)^(1/2)))
A303352
Expansion of Product_{n>=1} 1/(1 + 4*x^n)^(1/2).
Original entry on oeis.org
1, -2, 4, -18, 66, -230, 832, -3118, 11764, -44374, 168476, -643974, 2470506, -9503946, 36666736, -141824034, 549717490, -2134650662, 8303024092, -32343942934, 126161860886, -492703658930, 1926278860624, -7538530620746, 29529208903872, -115766389203370
Offset: 0
Expansion of Product_{n>=1} 1/(1 + b^2*x^n)^(1/b):
A081362 (b=1), this sequence (b=2),
A303353 (b=3).
-
seq(coeff(series(mul(1/(1+4*x^k)^(1/2), k = 1..n), x, n+1), x, n), n=0..40); # Muniru A Asiru, Apr 22 2018
-
nmax = 30; CoefficientList[Series[Product[1/(1 + 4*x^k)^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
A303351
Expansion of Product_{n>=1} (1 + 9*x^n)^(1/3).
Original entry on oeis.org
1, 3, -6, 57, -294, 1884, -13011, 95178, -712293, 5448495, -42444375, 335392941, -2681006280, 21639853488, -176113016241, 1443450932445, -11903668996713, 98695838478585, -822212761531101, 6878755556938029, -57767592614370576, 486792969548157129
Offset: 0
Expansion of Product_{n>=1} (1 + b^2*x^n)^(1/b):
A000009 (b=1),
A303350 (b=2), this sequence (b=3).
-
seq(coeff(series(mul((1+9*x^k)^(1/3), k = 1..n), x, n+1), x, n), n = 0..25); # Muniru A Asiru, Apr 22 2018
-
nmax = 30; CoefficientList[Series[Product[(1 + 9*x^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+9*x^k)^(1/3)))
A303392
Expansion of Product_{k>=1} ((1 + 4*x^k) / (1 - 4*x^k))^(1/2).
Original entry on oeis.org
1, 4, 12, 52, 156, 612, 2028, 7892, 27324, 107396, 384844, 1520436, 5566876, 22069796, 81990252, 325707348, 1222582268, 4862950020, 18395472460, 73233825524, 278700724764, 1110232691108, 4245596648876, 16920914168148, 64963831455996, 259012955299396
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[((1+4*x^k)/(1-4*x^k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/2), {x, 0, nmax}], x]
Showing 1-6 of 6 results.
Comments