cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A303360 Expansion of Product_{n>=1} ((1 + 4*x^n)/(1 - 4*x^n))^(1/4).

Original entry on oeis.org

1, 2, 4, 18, 34, 166, 384, 1902, 4756, 24022, 64284, 321542, 899658, 4455690, 12888944, 63185250, 187513426, 910880550, 2759413788, 13295839638, 40967821494, 195979968882, 612569599440, 2911592648458, 9213101043936, 43538337410474, 139246245625364
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)): A015128 (b=0), A303346 (b=1), this sequence (b=2).

Programs

  • Maple
    seq(coeff(series(mul(((1+4*x^k)/(1-4*x^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + 4*x^k)/(1 - 4*x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
    nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4*x^k)/(1-4*x^k))^(1/4)))

Formula

a(n) ~ c * 4^n / n^(3/4), where c = (QPochhammer[-1, 1/4] / QPochhammer[1/4])^(1/4) / Gamma(1/4) = 0.3885547372628... - Vaclav Kotesovec, Apr 23 2018

A303391 Expansion of Product_{k>=1} (1 + 4*x^k)/(1 - 4*x^k).

Original entry on oeis.org

1, 8, 40, 200, 872, 3720, 15400, 62920, 254440, 1024648, 4112680, 16483400, 66000360, 264150920, 1056903080, 4228272200, 16914393832, 67660396040, 270647139240, 1082600410440, 4330424811880, 17321748357640, 69287088965800, 277148557003720, 1108594618342760
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Maple
    N:= 50: # for a(0)..a(N)
    G:= mul((1+4*x^k)/(1-4*x^k),k=1..N):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 13 2019
  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+4*x^k)/(1-4*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = QPochhammer[-1, 1/4] / QPochhammer[1/4] = 3.9385207073365388638943873939345313401323799...

A303347 Expansion of Product_{n>=1} (1 - 4*x^n)^(1/2).

Original entry on oeis.org

1, -2, -4, -2, -6, -6, -56, -158, -612, -2070, -7228, -25238, -89646, -319466, -1150168, -4164978, -15177718, -55592614, -204617788, -756314982, -2806456898, -10450497682, -39040372248, -146273912858, -549533738952, -2069680656234, -7812908945556
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/2, g(n) = 4.

Crossrefs

Expansion of Product_{n>=1} (1 - b^2*x^n)^(1/b): A010815 (b=1), this sequence (b=2), A303348 (b=3).

Programs

  • Maple
    seq(coeff(series(mul((1-4*x^k)^(1/2), k = 1..n), x, n+1), x, n), n=0..40); # Muniru A Asiru, Apr 22 2018
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-4*x^k)^(1/2)))

Formula

a(n) ~ -c * 2^(2*n-1) / (sqrt(Pi) * n^(3/2)), where c = QPochhammer[1/4]^(1/2) = 0.8297816201389011939293261374110190... - Vaclav Kotesovec, Apr 25 2018

A303352 Expansion of Product_{n>=1} 1/(1 + 4*x^n)^(1/2).

Original entry on oeis.org

1, -2, 4, -18, 66, -230, 832, -3118, 11764, -44374, 168476, -643974, 2470506, -9503946, 36666736, -141824034, 549717490, -2134650662, 8303024092, -32343942934, 126161860886, -492703658930, 1926278860624, -7538530620746, 29529208903872, -115766389203370
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/2, g(n) = -4.

Crossrefs

Expansion of Product_{n>=1} 1/(1 + b^2*x^n)^(1/b): A081362 (b=1), this sequence (b=2), A303353 (b=3).

Programs

  • Maple
    seq(coeff(series(mul(1/(1+4*x^k)^(1/2), k = 1..n), x, n+1), x, n), n=0..40); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 + 4*x^k)^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)

Formula

a(n) ~ c * (-4)^n / sqrt(Pi*n), where c = 1 / QPochhammer[-1/4]^(1/2) = 0.91806413264267465793225216525758518... - Vaclav Kotesovec, Apr 25 2018

A303351 Expansion of Product_{n>=1} (1 + 9*x^n)^(1/3).

Original entry on oeis.org

1, 3, -6, 57, -294, 1884, -13011, 95178, -712293, 5448495, -42444375, 335392941, -2681006280, 21639853488, -176113016241, 1443450932445, -11903668996713, 98695838478585, -822212761531101, 6878755556938029, -57767592614370576, 486792969548157129
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/3, g(n) = -9.
In general, if h > 1 and g.f. = Product_{k>=1} (1 + h^2*x^k)^(1/h), then a(n) ~ -(-1)^n * c^(1/h) * h^(2*n-1) / (Gamma(1 - 1/h) * n^(1 + 1/h)), where c = Product_{k>=2} (1 + (-1)^k / h^(2*k-2)). - Vaclav Kotesovec, Apr 22 2018

Crossrefs

Expansion of Product_{n>=1} (1 + b^2*x^n)^(1/b): A000009 (b=1), A303350 (b=2), this sequence (b=3).

Programs

  • Maple
    seq(coeff(series(mul((1+9*x^k)^(1/3), k = 1..n), x, n+1), x, n), n = 0..25); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 9*x^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+9*x^k)^(1/3)))

Formula

a(n) ~ -(-1)^n * c^(1/3) * 3^(2*n-1) / (Gamma(2/3) * n^(4/3)), where c = Product_{k>=2} (1 + 9*(-1/9)^k) = 1.09874828793226302381837574278380702... - Vaclav Kotesovec, Apr 22 2018

A303392 Expansion of Product_{k>=1} ((1 + 4*x^k) / (1 - 4*x^k))^(1/2).

Original entry on oeis.org

1, 4, 12, 52, 156, 612, 2028, 7892, 27324, 107396, 384844, 1520436, 5566876, 22069796, 81990252, 325707348, 1222582268, 4862950020, 18395472460, 73233825524, 278700724764, 1110232691108, 4245596648876, 16920914168148, 64963831455996, 259012955299396
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1+4*x^k)/(1-4*x^k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/2), {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(c) * 4^n / sqrt(Pi*n), where c = QPochhammer[-1, 1/4]/QPochhammer[1/4] = 3.9385207073365388638943873939345313401323799...
Showing 1-6 of 6 results.