cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A303384 Total area of all rectangles with dimensions s and t where s | t, n = s + t and s <= t.

Original entry on oeis.org

0, 1, 2, 7, 4, 22, 6, 35, 26, 50, 10, 126, 12, 86, 100, 155, 16, 247, 18, 294, 172, 182, 22, 590, 124, 242, 260, 518, 28, 860, 30, 651, 364, 386, 380, 1365, 36, 470, 484, 1390, 40, 1532, 42, 1134, 1144, 662, 46, 2542, 342, 1395, 772, 1526, 52, 2380, 788
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 22 2018

Keywords

Crossrefs

Programs

  • GAP
    List([1..60],n->Sum([1..Int(n/2)],i->i*(n-i)*(Int((n-i)/i)-Int((n-i-1)/i)))); # Muniru A Asiru, Jun 07 2018
  • Magma
    [0] cat [&+[k*(n-k)*((n-k) div k)-(n-k-1) div k:  k in [1..n div 2]]: n in [2..80]]; // Vincenzo Librandi, Jun 07 2018
    
  • Maple
    with(numtheory): seq(n*sigma(n) - sigma[2](n), n=1..60); # Ridouane Oudra, Apr 15 2021
  • Mathematica
    Table[Sum[i (n - i) (Floor[(n - i)/i] - Floor[(n - i - 1)/i]), {i, Floor[n/2]}], {n, 80}]
    a[n_] := n * DivisorSigma[1, n] - DivisorSigma[2, n]; Array[a, 100] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    a(n) = sum(i=1, n\2, i*(n-i)*((n-i)\i - (n-i-1)\i)); \\ Michel Marcus, Jun 07 2018
    
  • PARI
    a(n) = sumdiv(n, d, d*(n-d)); \\ Daniel Suteu, Jun 19 2018
    
  • PARI
    a(n) = {my(f = factor(n)); n * sigma(f) - sigma(f, 2);} \\ Amiram Eldar, Dec 11 2023
    

Formula

a(n) = Sum_{i=1..floor(n/2)} i * (n-i) * (floor((n-i)/i) - floor((n-i-1)/i)).
a(n) = Sum_{d|n} d*(n-d). - Daniel Suteu, Jun 19 2018
a(n) = n*sigma(n) - sigma_2(n). - Ridouane Oudra, Apr 15 2021
From Amiram Eldar, Dec 11 2023: (Start)
a(n) = A064987(n) - A001157(n).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) - zeta(3) = 0.442877... . (End)

A303479 Total volume of the family of rectangular prisms with dimensions p, q, and |q - p| where p divides q, n = p + q and p < q.

Original entry on oeis.org

0, 0, 2, 6, 12, 36, 30, 90, 110, 168, 90, 560, 132, 396, 756, 930, 240, 1692, 306, 2436, 1876, 1140, 462, 6120, 2052, 1656, 3620, 5928, 756, 11304, 870, 8370, 6084, 2976, 8988, 22070, 1260, 3780, 9364, 26220, 1560, 27720, 1722, 18912, 29304, 5676, 2070
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 24 2018

Keywords

Crossrefs

Cf. A303385.

Programs

  • Mathematica
    Table[Sum[i (n - i) (n - 2 i) (Floor[(n - i)/i] - Floor[(n - i - 1)/i]), {i, Floor[(n - 1)/2]}], {n, 50}]

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} i * (n-i) * (n-2*i) * (floor((n-i)/i) - floor((n-i-1)/i)).

A303481 Total volume of the family of rectangular prisms with dimensions p, q and p + q where p divides q, n = p + q and p < q.

Original entry on oeis.org

0, 0, 6, 12, 20, 78, 42, 152, 234, 250, 110, 1080, 156, 518, 1500, 1456, 272, 2988, 342, 3880, 3612, 1342, 506, 10704, 3100, 1898, 7020, 9016, 812, 19050, 930, 12640, 12012, 3298, 13300, 37476, 1332, 4142, 18876, 39600, 1640, 45822, 1806, 28600, 51480, 6118
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 24 2018

Keywords

Crossrefs

Cf. A303385.

Programs

  • Mathematica
    Table[Sum[n*i (n - i) (Floor[(n - i)/i] - Floor[(n - i - 1)/i]), {i, Floor[(n - 1)/2]}], {n, 50}]

Formula

a(n) = n * Sum_{i=1..floor((n-1)/2)} n * i * (n-i) (floor((n-i)/i) - floor((n-i-1)/i)).
a(n) = n * A303385(n).
Showing 1-3 of 3 results.