cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303537 Expansion of ((1 + 4*x)/(1 - 4*x))^(1/4).

Original entry on oeis.org

1, 2, 2, 12, 22, 124, 276, 1496, 3686, 19436, 51068, 263720, 724860, 3681880, 10466920, 52450992, 153093254, 758495564, 2261603564, 11096526344, 33676743956, 163842737928, 504738342808, 2437418983888, 7605947276508, 36487283224952, 115140704639576
Offset: 0

Views

Author

Seiichi Manyama, Apr 25 2018

Keywords

Comments

Let ((1 + k*x)/(1 - k*x))^(1/k) = a(0) + a(1)*x + a(2)*x^2 + ...
Then n*a(n) = 2*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Surd[(1+4x)/(1-4x),4],{x,0,40}],x] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(((1+4*x)/(1-4*x))^(1/4))

Formula

a(n) ~ 2^(2*n + 1/4) / (Gamma(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 26 2018
n*a(n) = 2*a(n-1) + 4^2*(n-2)*a(n-2) for n > 1.
G.f.: A(x)=F(x*G(x^2)), where F(x) is the g.f. for A063886, and G(x) is the g.f. for A151403. - Alexander Burstein, Nov 13 2023