A303538
Expansion of ((1 + 8*x)/(1 - 8*x))^(1/8).
Original entry on oeis.org
1, 2, 2, 44, 86, 1724, 4244, 80024, 223718, 4033132, 12260988, 213418728, 689489148, 11663520216, 39489621864, 652201870896, 2292944058246, 37099981422156, 134565259916012, 2138626858270408, 7964821656989332, 124595233474799752, 474734644904361112
Offset: 0
-
a[n]:=if n<2 then n+1 else (2*a[n-1]+64*(n-2)*a[n-2])/n;
makelist(a[n],n,0,1000); /* Tani Akinari, Apr 29 2018 */
-
N=66; x='x+O('x^N); Vec(((1+8*x)/(1-8*x))^(1/8))
A304941
Expansion of ((1 + 4*x)/(1 - 4*x))^(3/4).
Original entry on oeis.org
1, 6, 18, 68, 246, 948, 3572, 13896, 53286, 208452, 807132, 3169080, 12346300, 48602760, 190150440, 750018448, 2943363078, 11627329764, 45736940364, 180897649368, 712881236052, 2822389182104, 11138924119512, 44137230865392, 174405194802524, 691557285091176
Offset: 0
-
[n le 2 select 6^(n-1) else 2*(3*Self(n-1) + 8*(n-3)*Self(n-2))/(n-1): n in [1..40]]; // G. C. Greubel, Jun 07 2023
-
CoefficientList[Series[((1+4x)/(1-4x))^(3/4),{x,0,30}],x] (* Harvey P. Dale, Oct 24 2020 *)
-
N=66; x='x+O('x^N); Vec(((1+4*x)/(1-4*x))^(3/4))
-
@CachedFunction
def a(n): # a = A304941
if n<2: return 6^n
else: return 2*(3*a(n-1) + 8*(n-2)*a(n-2))//n
[a(n) for n in range(41)] # G. C. Greubel, Jun 07 2023
A304933
a(0) = 0, a(1) = 1 and a(n) = 2*a(n-1)/(n-1) + 16*a(n-2) for n > 1.
Original entry on oeis.org
0, 1, 2, 18, 44, 310, 828, 5236, 14744, 87462, 255340, 1450460, 4349160, 23932220, 73268440, 393382440, 1224746032, 6447212294, 20354432076, 105417000268, 336767439560, 1720348748244, 5552121770888, 28030318314712, 91271367318096, 456091040311900
Offset: 0
A304940
Expansion of ((1 + 4*x)/(1 - 4*x))^(1/2).
Original entry on oeis.org
1, 4, 8, 32, 96, 384, 1280, 5120, 17920, 71680, 258048, 1032192, 3784704, 15138816, 56229888, 224919552, 843448320, 3373793280, 12745441280, 50981765120, 193730707456, 774922829824, 2958796259328, 11835185037312, 45368209309696, 181472837238784
Offset: 0
A305608
Expansion of 1/2 * (((1 + 4*x)/(1 - 4*x))^(1/4) - 1).
Original entry on oeis.org
0, 1, 1, 6, 11, 62, 138, 748, 1843, 9718, 25534, 131860, 362430, 1840940, 5233460, 26225496, 76546627, 379247782, 1130801782, 5548263172, 16838371978, 81921368964, 252369171404, 1218709491944, 3802973638254, 18243641612476, 57570352319788
Offset: 0
1/2 * (((1 + k*x)/(1 - k*x))^(1/k) - 1):
A001405(n-1) (k=2), this sequence (k=4),
A305609 (k=8).
-
seq(coeff(series((1/2)*(((1+4*x)/(1-4*x))^(1/4)-1), x,35),x,n),n=0..30); # Muniru A Asiru, Jun 06 2018
A304915
Expansion of ((1 + 16*x)/(1 - 16*x))^(1/16).
Original entry on oeis.org
1, 2, 2, 172, 342, 26556, 67220, 4875160, 14125030, 973837420, 3087573628, 204536051176, 692771715836, 44412235657176, 158358513025896, 9874709152875568, 36706645561910150, 2234840966950941260, 8601116786415880940, 512801585354912006600, 2032977466125710169236
Offset: 0
-
CoefficientList[Series[((1+16x)/(1-16x))^(1/16),{x,0,30}],x] (* Harvey P. Dale, Jul 21 2021 *)
-
N=66; x='x+O('x^N); Vec(((1+16*x)/(1-16*x))^(1/16))
Showing 1-6 of 6 results.
Comments