A303658 Decimal expansion of the alternating sum of the reciprocals of the triangular numbers.
7, 7, 2, 5, 8, 8, 7, 2, 2, 2, 3, 9, 7, 8, 1, 2, 3, 7, 6, 6, 8, 9, 2, 8, 4, 8, 5, 8, 3, 2, 7, 0, 6, 2, 7, 2, 3, 0, 2, 0, 0, 0, 5, 3, 7, 4, 4, 1, 0, 2, 1, 0, 1, 6, 4, 8, 2, 7, 2, 0, 0, 3, 7, 9, 7, 3, 5, 7, 4, 4, 8, 7, 8, 7, 8, 7, 7, 8, 8, 6, 2, 4, 2, 3, 4, 5, 3
Offset: 0
Examples
1/1 - 1/3 + 1/6 - 1/10 + 1/15 - 1/21 + ... = 0.77258872223978123766892848583270627230200053744102...
Crossrefs
Programs
-
Mathematica
RealDigits[4*Log[2] - 2, 10, 100][[1]] (* Amiram Eldar, Aug 19 2020 *) RealDigits[Log[16]-2,10,120][[1]] (* Harvey P. Dale, Apr 30 2022 *)
-
PARI
sumalt(n=1, (-1)^(n+1)*2/(n*(n+1))) \\ Michel Marcus, Apr 28 2018
-
PARI
log(16)-2 \\ Altug Alkan, May 07 2018
Formula
Equals log(16/e^2) = log(16) - 2.
Equals Sum_{k>=0} 1/((k+2)*2^k) = Sum_{k>=2} 1/A057711(k). - Amiram Eldar, Aug 19 2020
Equals 1 - Sum_{k>=1} 1/(k*(k+1)*(2*k+1)). - Davide Rotondo, May 24 2025