cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A016639 Decimal expansion of log(16) = 4*log(2).

Original entry on oeis.org

2, 7, 7, 2, 5, 8, 8, 7, 2, 2, 2, 3, 9, 7, 8, 1, 2, 3, 7, 6, 6, 8, 9, 2, 8, 4, 8, 5, 8, 3, 2, 7, 0, 6, 2, 7, 2, 3, 0, 2, 0, 0, 0, 5, 3, 7, 4, 4, 1, 0, 2, 1, 0, 1, 6, 4, 8, 2, 7, 2, 0, 0, 3, 7, 9, 7, 3, 5, 7, 4, 4, 8, 7, 8, 7, 8, 7, 7, 8, 8, 6, 2, 4, 2, 3, 4, 5, 3, 3, 0, 7, 9, 8, 5, 6, 7, 4, 7, 5
Offset: 1

Views

Author

Keywords

Examples

			2.77258872223978123766892848583270627230200053744102101648272... - _Harry J. Smith_, May 17 2009
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Equals 4*A002162.
Equals (4/5)*A016655.
Equals A303658 + 2.
Cf. A016444 (continued fraction).

Programs

  • Magma
    Log(16); // Vincenzo Librandi, Feb 20 2015
  • Mathematica
    RealDigits[Log[16], 10, 120][[1]] (* Harvey P. Dale, Jun 12 2012 *)
  • PARI
    default(realprecision, 20080); x=log(16); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016639.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009, corrected May 19 2009
    

Formula

Equals 4*A002162.
Equals Sum_{k=1..4} (-1)^(k+1) gamma(0, k/4) where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018
Equals -2 + Sum_{k>=1} H(k)*(k+1)/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, May 28 2021
Equals 1 + Limit_{n -> infinity} (1/n)*Sum_{k = 1..n} (2*n + k)/(2*n - k) = 2*( 1 + Limit_{n -> infinity} (1/n)*Sum_{k = 1..n} (n - k)/(n + k) ). - Peter Bala, Oct 10 2021
Equals 2 + 1/(1 + 1/(3 + 2/(4 + 6/(5 + 6/(6 + 12/(7 + 12/(8 + ... + n*(n-1)/(2*n-1 + n*(n-1)/(2*n + ...))))))))). Cf. A188859. - Peter Bala, Mar 04 2024

A306324 Decimal expansion of 2*Pi*tanh(sqrt(5/3)*Pi/2)/sqrt(15).

Original entry on oeis.org

1, 5, 6, 7, 0, 6, 5, 1, 3, 1, 2, 6, 4, 0, 5, 4, 6, 7, 7, 5, 8, 8, 1, 1, 1, 5, 7, 7, 9, 5, 9, 9, 5, 4, 6, 4, 3, 9, 9, 5, 1, 6, 0, 0, 7, 3, 4, 7, 7, 6, 0, 2, 3, 0, 7, 4, 5, 4, 1, 2, 4, 3, 9, 8, 3, 1, 8, 4, 1, 0, 2, 0, 7, 0, 4, 1, 9, 8, 7, 6, 2, 5, 1, 5, 7, 4, 8, 4, 0, 6, 7, 0, 0, 3, 8, 0, 8, 3, 6, 1, 7, 7, 6, 9, 3, 0, 7, 6, 4, 0, 1, 3, 6, 2, 7, 6, 7, 9, 7, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 07 2019

Keywords

Comments

Decimal expansion of the sum of the reciprocals of the centered triangular numbers (A005448).

Examples

			1.56706513126405467758811157795995464399516007...
		

Crossrefs

Cf. A005448, A226985, A228048 (decimal expansion of the sum of the reciprocals of the centered square numbers), A303658.

Programs

  • Mathematica
    RealDigits[2 Pi Tanh[Sqrt[5/3] Pi/2]/Sqrt[15], 10, 120][[1]]
  • PARI
    2*Pi*tanh(sqrt(5/3)*Pi/2)/sqrt(15) \\ Michel Marcus, Feb 08 2019

Formula

Equals Sum_{k>=1} 1/(3*k*(k - 1)/2 + 1).
Equals Sum_{k>=1} 1/A005448(k).
Showing 1-2 of 2 results.