A303668 Expansion of 1/((1 - x)*(2 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function.
1, 2, 3, 5, 8, 12, 19, 30, 46, 71, 111, 172, 266, 413, 640, 991, 1537, 2383, 3692, 5722, 8869, 13745, 21303, 33018, 51172, 79308, 122917, 190503, 295251, 457597, 709207, 1099165, 1703546, 2640245, 4091988, 6341979, 9829132, 15233702, 23609994, 36592010, 56712212, 87895562
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5254
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- Index entries for sequences related to compositions
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(8*j+1), b(n-j), 0), j=1..n)) end: a:= proc(n) option remember; `if`(n<0, 0, b(n)+a(n-1)) end: seq(a(n), n=0..50); # Alois P. Heinz, Apr 28 2018
-
Mathematica
nmax = 41; CoefficientList[Series[1/((1 - x) (2 - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)))), {x, 0, nmax}], x] nmax = 41; CoefficientList[Series[1/((1 - x) (1 - Sum[x^(k (k + 1)/2), {k, 1, nmax}])), {x, 0, nmax}], x] a[0] = 1; a[n_] := a[n] = Sum[SquaresR[1, 8 k + 1] a[n - k], {k, 1, n}]/2; Accumulate[Table[a[n], {n, 0, 41}]]
Formula
G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k*(k+1)/2))).
Comments