cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304487 a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n) mod 2))/6.

Original entry on oeis.org

1, 4, 15, 36, 73, 128, 207, 312, 449, 620, 831, 1084, 1385, 1736, 2143, 2608, 3137, 3732, 4399, 5140, 5961, 6864, 7855, 8936, 10113, 11388, 12767, 14252, 15849, 17560, 19391, 21344, 23425, 25636, 27983, 30468, 33097, 35872, 38799, 41880, 45121, 48524, 52095
Offset: 1

Views

Author

Stefano Spezia, Aug 17 2018

Keywords

Comments

a(n) is the trace of an n X n matrix A in which the entries are 1 through n^2, spiraling inward starting with 1 in the (1,1)-entry (proved).
The first three terms of a(n) coincide with those of A317614.

Examples

			For n = 1 the matrix A is
   1
with trace Tr(A) = a(1) = 1.
For n = 2 the matrix A is
   1, 2
   4, 3
with Tr(A) = a(2) = 4.
For n = 3 the matrix A is
   1, 2, 3
   8, 9, 4
   7, 6, 5
with Tr(A) = a(3) = 15.
For n = 4 the matrix A is
   1,  2,  3, 4
  12, 13, 14, 5
  11, 16, 15, 6
  10,  9,  8, 7
with Tr(A) = a(4) = 36.
		

Crossrefs

Cf. A126224 (determinant of the matrix A), A317298 (first differences).

Programs

  • GAP
    a_n:=List([1..43], n->(3 + 2*n - 3*n^2 + 4*n^3 - 3*RemInt(-1 + n, 2))/6);
    
  • GAP
    List([1..43],n->(3+2*n-3*n^2+4*n^3-3*((-1+n) mod 2))/6); # Muniru A Asiru, Sep 17 2018
  • Magma
    I:=[1,4,15,36,73]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..43]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    seq((3+2*n-3*n^2+4*n^3-3*modp((-1+n),2))/6,n=1..43); # Muniru A Asiru, Sep 17 2018
  • Mathematica
    Table[1/6 (3 + 2 n - 3 n^2 + 4 n^3 - 3 Mod[-1 + n, 2]), {n, 1, 43}] (* or *)
    CoefficientList[ Series[x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)), {x, 0, 43}], x] (* or *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {1, 4, 15, 36, 73}, 43]
  • Maxima
    a(n):=(3 + 2*n - 3*n^2 + 4*n^3 - 3*mod(-1 + n, 2))/6$ makelist(a(n), n, 1, 43);
    
  • PARI
    Vec(x*(1 + x + 5*x^2 + x^3)/((-1 + x)^4*(1 + x)) + O(x^44))
    
  • PARI
    a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n)%2))/6
    

Formula

a(n) = A045991(n) - Sum_{k=2..n-1} A085046(k) for n > 2 (proved).
G.f.: x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)).
a(n) + a(n + 1) = A228958(2*n + 1).
From Colin Barker, Aug 17 2018: (Start)
a(n) = (2*n - 3*n^2 + 4*n^3) / 6 for n even.
a(n) = (3 + 2*n - 3*n^2 + 4*n^3) / 6 for n odd.
a(n) = 3*a(n - 1) - 2*a(n - 2) - 2*a(n - 3) + 3*a(n - 4) - a(n - 5) for n > 5.
(End)
E.g.f.: (1/12)*exp(-x)*(-3 + exp(2*x)*(3 + 6*x + 18*x^2 + 8*x^3)). - Stefano Spezia, Feb 10 2019