A304487 a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n) mod 2))/6.
1, 4, 15, 36, 73, 128, 207, 312, 449, 620, 831, 1084, 1385, 1736, 2143, 2608, 3137, 3732, 4399, 5140, 5961, 6864, 7855, 8936, 10113, 11388, 12767, 14252, 15849, 17560, 19391, 21344, 23425, 25636, 27983, 30468, 33097, 35872, 38799, 41880, 45121, 48524, 52095
Offset: 1
Examples
For n = 1 the matrix A is 1 with trace Tr(A) = a(1) = 1. For n = 2 the matrix A is 1, 2 4, 3 with Tr(A) = a(2) = 4. For n = 3 the matrix A is 1, 2, 3 8, 9, 4 7, 6, 5 with Tr(A) = a(3) = 15. For n = 4 the matrix A is 1, 2, 3, 4 12, 13, 14, 5 11, 16, 15, 6 10, 9, 8, 7 with Tr(A) = a(4) = 36.
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Crossrefs
Programs
-
GAP
a_n:=List([1..43], n->(3 + 2*n - 3*n^2 + 4*n^3 - 3*RemInt(-1 + n, 2))/6);
-
GAP
List([1..43],n->(3+2*n-3*n^2+4*n^3-3*((-1+n) mod 2))/6); # Muniru A Asiru, Sep 17 2018
-
Magma
I:=[1,4,15,36,73]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..43]]; // Vincenzo Librandi, Aug 26 2018
-
Maple
seq((3+2*n-3*n^2+4*n^3-3*modp((-1+n),2))/6,n=1..43); # Muniru A Asiru, Sep 17 2018
-
Mathematica
Table[1/6 (3 + 2 n - 3 n^2 + 4 n^3 - 3 Mod[-1 + n, 2]), {n, 1, 43}] (* or *) CoefficientList[ Series[x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)), {x, 0, 43}], x] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {1, 4, 15, 36, 73}, 43]
-
Maxima
a(n):=(3 + 2*n - 3*n^2 + 4*n^3 - 3*mod(-1 + n, 2))/6$ makelist(a(n), n, 1, 43);
-
PARI
Vec(x*(1 + x + 5*x^2 + x^3)/((-1 + x)^4*(1 + x)) + O(x^44))
-
PARI
a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n)%2))/6
Formula
G.f.: x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)).
a(n) + a(n + 1) = A228958(2*n + 1).
From Colin Barker, Aug 17 2018: (Start)
a(n) = (2*n - 3*n^2 + 4*n^3) / 6 for n even.
a(n) = (3 + 2*n - 3*n^2 + 4*n^3) / 6 for n odd.
a(n) = 3*a(n - 1) - 2*a(n - 2) - 2*a(n - 3) + 3*a(n - 4) - a(n - 5) for n > 5.
(End)
E.g.f.: (1/12)*exp(-x)*(-3 + exp(2*x)*(3 + 6*x + 18*x^2 + 8*x^3)). - Stefano Spezia, Feb 10 2019
Comments