cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304726 a(n) = n^4 + 4*n^2 + 3.

Original entry on oeis.org

3, 8, 35, 120, 323, 728, 1443, 2600, 4355, 6888, 10403, 15128, 21315, 29240, 39203, 51528, 66563, 84680, 106275, 131768, 161603, 196248, 236195, 281960, 334083, 393128, 459683, 534360, 617795, 710648, 813603, 927368, 1052675, 1190280, 1340963, 1505528, 1684803
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2018

Keywords

Comments

Alternating sum of all points on the fourth row of the Hosoya triangle composed of Fibonacci polynomials, where F_{0}(n) = 1 and F_{1}(n) = n, hence a(n) = F_{5}(n)/F_{1}(n) for n>0 (see Florez et al. reference, page 7, Table 4 and following sum).
Apart from 8, all terms belong to A217554 because a(n) = (n^2+1)^2 + (n+1)^2 + (n-1)^2 = (n^2+2)^2 - 1. - Bruno Berselli, Jun 04 2018

Crossrefs

Subsequence of A005563.

Programs

  • GAP
    List([0..40], n -> (n^2+2)^2-1); # Muniru A Asiru, Jun 03 2018
  • Magma
    [n^4+4*n^2+3: n in [0..40]];
    
  • Maple
    seq((n^2+2)^2-1,n=0..40); # Muniru A Asiru, Jun 03 2018
  • Mathematica
    Table[n^4 + 4 n^2 + 3, {n, 0, 35}]
    LinearRecurrence[{5,-10,10,-5,1},{3,8,35,120,323},40] (* Harvey P. Dale, Mar 04 2021 *)

Formula

G.f.: (3 - 7*x + 25*x^2 - 5*x^3 + 8*x^4)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A059100(n)^2 - 1.
Sum_{n>=0} 1/a(n) = 1/6 + coth(Pi)*Pi/4 - coth(sqrt(3)*Pi)*Pi/(4*sqrt(3)). - Amiram Eldar, Feb 24 2023