A304726 a(n) = n^4 + 4*n^2 + 3.
3, 8, 35, 120, 323, 728, 1443, 2600, 4355, 6888, 10403, 15128, 21315, 29240, 39203, 51528, 66563, 84680, 106275, 131768, 161603, 196248, 236195, 281960, 334083, 393128, 459683, 534360, 617795, 710648, 813603, 927368, 1052675, 1190280, 1340963, 1505528, 1684803
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..10000
- Rigoberto Florez, Robinson A. Higuita, and Antara Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.5.
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([0..40], n -> (n^2+2)^2-1); # Muniru A Asiru, Jun 03 2018
-
Magma
[n^4+4*n^2+3: n in [0..40]];
-
Maple
seq((n^2+2)^2-1,n=0..40); # Muniru A Asiru, Jun 03 2018
-
Mathematica
Table[n^4 + 4 n^2 + 3, {n, 0, 35}] LinearRecurrence[{5,-10,10,-5,1},{3,8,35,120,323},40] (* Harvey P. Dale, Mar 04 2021 *)
Formula
G.f.: (3 - 7*x + 25*x^2 - 5*x^3 + 8*x^4)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A059100(n)^2 - 1.
Sum_{n>=0} 1/a(n) = 1/6 + coth(Pi)*Pi/4 - coth(sqrt(3)*Pi)*Pi/(4*sqrt(3)). - Amiram Eldar, Feb 24 2023
Comments