A336342
Number of ways to choose a partition of each part of a strict composition of n.
Original entry on oeis.org
1, 1, 2, 7, 11, 29, 81, 155, 312, 708, 1950, 3384, 7729, 14929, 32407, 81708, 151429, 305899, 623713, 1234736, 2463743, 6208978, 10732222, 22487671, 43000345, 86573952, 160595426, 324990308, 744946690, 1336552491, 2629260284, 5050032692, 9681365777
Offset: 0
The a(1) = 1 through a(4) = 11 ways:
(1) (2) (3) (4)
(1,1) (2,1) (2,2)
(1,1,1) (3,1)
(1),(2) (1),(3)
(2),(1) (2,1,1)
(1),(1,1) (3),(1)
(1,1),(1) (1,1,1,1)
(1),(2,1)
(2,1),(1)
(1),(1,1,1)
(1,1,1),(1)
Multiset partitions of partitions are
A001970.
Splittings of partitions are
A323583.
Splittings of partitions with distinct sums are
A336131.
Partitions:
- Partitions of each part of a partition are
A063834.
- Compositions of each part of a partition are
A075900.
- Strict partitions of each part of a partition are
A270995.
- Strict compositions of each part of a partition are
A336141.
Strict partitions:
- Partitions of each part of a strict partition are
A271619.
- Compositions of each part of a strict partition are
A304961.
- Strict partitions of each part of a strict partition are
A279785.
- Strict compositions of each part of a strict partition are
A336142.
Compositions:
- Partitions of each part of a composition are
A055887.
- Compositions of each part of a composition are
A133494.
- Strict partitions of each part of a composition are
A304969.
- Strict compositions of each part of a composition are
A307068.
Strict compositions:
- Partitions of each part of a strict composition are
A336342.
- Compositions of each part of a strict composition are
A336127.
- Strict partitions of each part of a strict composition are
A336343.
- Strict compositions of each part of a strict composition are
A336139.
-
Table[Length[Join@@Table[Tuples[IntegerPartitions/@ctn],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,10}]
-
seq(n)={[subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*numbpart(k) + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021
A336343
Number of ways to choose a strict partition of each part of a strict composition of n.
Original entry on oeis.org
1, 1, 1, 4, 6, 11, 26, 39, 78, 142, 320, 488, 913, 1558, 2798, 5865, 9482, 16742, 28474, 50814, 82800, 172540, 266093, 472432, 790824, 1361460, 2251665, 3844412, 7205416, 11370048, 19483502, 32416924, 54367066, 88708832, 149179800, 239738369, 445689392
Offset: 0
The a(1) = 1 through a(5) = 11 ways:
(1) (2) (3) (4) (5)
(2,1) (3,1) (3,2)
(1),(2) (1),(3) (4,1)
(2),(1) (3),(1) (1),(4)
(1),(2,1) (2),(3)
(2,1),(1) (3),(2)
(4),(1)
(1),(3,1)
(2,1),(2)
(2),(2,1)
(3,1),(1)
Multiset partitions of partitions are
A001970.
Splittings of strict partitions are
A072706.
Set partitions of strict partitions are
A294617.
Splittings of partitions with distinct sums are
A336131.
Cf.
A008289,
A011782,
A304786,
A318683,
A318684,
A319794,
A323583,
A336128,
A336130,
A336132,
A336133.
Partitions:
- Partitions of each part of a partition are
A063834.
- Compositions of each part of a partition are
A075900.
- Strict partitions of each part of a partition are
A270995.
- Strict compositions of each part of a partition are
A336141.
Strict partitions:
- Partitions of each part of a strict partition are
A271619.
- Compositions of each part of a strict partition are
A304961.
- Strict partitions of each part of a strict partition are
A279785.
- Strict compositions of each part of a strict partition are
A336142.
Compositions:
- Partitions of each part of a composition are
A055887.
- Compositions of each part of a composition are
A133494.
- Strict partitions of each part of a composition are
A304969.
- Strict compositions of each part of a composition are
A307068.
Strict compositions:
- Partitions of each part of a strict composition are
A336342.
- Compositions of each part of a strict composition are
A336127.
- Strict partitions of each part of a strict composition are
A336343.
- Strict compositions of each part of a strict composition are
A336139.
-
strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Join@@Table[Tuples[strptn/@ctn],{ctn,Join@@Permutations/@strptn[n]}]],{n,0,10}]
-
\\ here Q(N) gives A000009 as a vector.
Q(n) = {Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)))}
seq(n)={my(b=Q(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*b[1+k] + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021
A336141
Number of ways to choose a strict composition of each part of an integer partition of n.
Original entry on oeis.org
1, 1, 2, 5, 9, 17, 41, 71, 138, 270, 518, 938, 1863, 3323, 6163, 11436, 20883, 37413, 69257, 122784, 221873, 397258, 708142, 1249955, 2236499, 3917628, 6909676, 12130972, 21251742, 36973609, 64788378, 112103360, 194628113, 336713377, 581527210, 1000153063
Offset: 0
The a(1) = 1 through a(5) = 17 ways:
(1) (2) (3) (4) (5)
(1),(1) (1,2) (1,3) (1,4)
(2,1) (3,1) (2,3)
(2),(1) (2),(2) (3,2)
(1),(1),(1) (3),(1) (4,1)
(1,2),(1) (3),(2)
(2,1),(1) (4),(1)
(2),(1),(1) (1,2),(2)
(1),(1),(1),(1) (1,3),(1)
(2,1),(2)
(3,1),(1)
(2),(2),(1)
(3),(1),(1)
(1,2),(1),(1)
(2,1),(1),(1)
(2),(1),(1),(1)
(1),(1),(1),(1),(1)
Multiset partitions of partitions are
A001970.
Splittings of partitions are
A323583.
Splittings of partitions with distinct sums are
A336131.
Partitions:
- Partitions of each part of a partition are
A063834.
- Compositions of each part of a partition are
A075900.
- Strict partitions of each part of a partition are
A270995.
- Strict compositions of each part of a partition are
A336141.
Strict partitions:
- Partitions of each part of a strict partition are
A271619.
- Compositions of each part of a strict partition are
A304961.
- Strict partitions of each part of a strict partition are
A279785.
- Strict compositions of each part of a strict partition are
A336142.
Compositions:
- Partitions of each part of a composition are
A055887.
- Compositions of each part of a composition are
A133494.
- Strict partitions of each part of a composition are
A304969.
- Strict compositions of each part of a composition are
A307068.
Strict compositions:
- Partitions of each part of a strict composition are
A336342.
- Compositions of each part of a strict composition are
A336127.
- Strict partitions of each part of a strict composition are
A336343.
- Strict compositions of each part of a strict composition are
A336139.
-
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 g(n$2):
seq(a(n), n=0..38); # Alois P. Heinz, Jul 31 2020
-
Table[Length[Join@@Table[Tuples[Join@@Permutations/@Select[IntegerPartitions[#],UnsameQ@@#&]&/@ctn],{ctn,IntegerPartitions[n]}]],{n,0,10}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0,
If[n==0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
g[n_, i_] := g[n, i] = If[n==0 || i==1, 1, g[n, i-1] +
b[i, i, 0] g[n-i, Min[n-i, i]]];
a[n_] := g[n, n];
a /@ Range[0, 38] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
A316231
Expansion of Product_{k>=1} 1/(1 + q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).
Original entry on oeis.org
1, -1, 0, -2, 1, -2, 3, -3, 6, -8, 14, -10, 28, -26, 41, -73, 90, -112, 155, -221, 288, -501, 560, -799, 1153, -1610, 1953, -3095, 4073, -5224, 7295, -9536, 13536, -18402, 24757, -32936, 48714, -60790, 82101, -113247, 153330, -201522, 275713, -367041, 492991
Offset: 0
-
nmax = 44; CoefficientList[Series[Product[1/(1 + PartitionsQ[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 44; CoefficientList[Series[Exp[Sum[Sum[(-1)^k PartitionsQ[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (-PartitionsQ[d])^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 44}]
Showing 1-4 of 4 results.
Comments