cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304941 Expansion of ((1 + 4*x)/(1 - 4*x))^(3/4).

Original entry on oeis.org

1, 6, 18, 68, 246, 948, 3572, 13896, 53286, 208452, 807132, 3169080, 12346300, 48602760, 190150440, 750018448, 2943363078, 11627329764, 45736940364, 180897649368, 712881236052, 2822389182104, 11138924119512, 44137230865392, 174405194802524, 691557285091176
Offset: 0

Views

Author

Seiichi Manyama, May 22 2018

Keywords

Comments

Let ((1 + k*x)/(1 - k*x))^(m/k) = a(0) + a(1)*x + a(2)*x^2 + ... then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.

Crossrefs

((1 + 4*x)/(1 - 4*x))^(m/4): A303537 (m=1), A304940 (m=2), this sequence (m=3), A081654 (m=4).

Programs

  • Magma
    [n le 2 select 6^(n-1) else 2*(3*Self(n-1) + 8*(n-3)*Self(n-2))/(n-1): n in [1..40]]; // G. C. Greubel, Jun 07 2023
    
  • Mathematica
    CoefficientList[Series[((1+4x)/(1-4x))^(3/4),{x,0,30}],x] (* Harvey P. Dale, Oct 24 2020 *)
  • PARI
    N=66; x='x+O('x^N); Vec(((1+4*x)/(1-4*x))^(3/4))
    
  • SageMath
    @CachedFunction
    def a(n): # a = A304941
        if n<2: return 6^n
        else: return 2*(3*a(n-1) + 8*(n-2)*a(n-2))//n
    [a(n) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

n*a(n) = 6*a(n-1) + 4^2*(n-2)*a(n-2) for n > 1.
a(n) ~ 2^(2*n + 3/4) / (Gamma(3/4) * n^(1/4)). - Vaclav Kotesovec, May 28 2018