A304941 Expansion of ((1 + 4*x)/(1 - 4*x))^(3/4).
1, 6, 18, 68, 246, 948, 3572, 13896, 53286, 208452, 807132, 3169080, 12346300, 48602760, 190150440, 750018448, 2943363078, 11627329764, 45736940364, 180897649368, 712881236052, 2822389182104, 11138924119512, 44137230865392, 174405194802524, 691557285091176
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
[n le 2 select 6^(n-1) else 2*(3*Self(n-1) + 8*(n-3)*Self(n-2))/(n-1): n in [1..40]]; // G. C. Greubel, Jun 07 2023
-
Mathematica
CoefficientList[Series[((1+4x)/(1-4x))^(3/4),{x,0,30}],x] (* Harvey P. Dale, Oct 24 2020 *)
-
PARI
N=66; x='x+O('x^N); Vec(((1+4*x)/(1-4*x))^(3/4))
-
SageMath
@CachedFunction def a(n): # a = A304941 if n<2: return 6^n else: return 2*(3*a(n-1) + 8*(n-2)*a(n-2))//n [a(n) for n in range(41)] # G. C. Greubel, Jun 07 2023
Formula
n*a(n) = 6*a(n-1) + 4^2*(n-2)*a(n-2) for n > 1.
a(n) ~ 2^(2*n + 3/4) / (Gamma(3/4) * n^(1/4)). - Vaclav Kotesovec, May 28 2018
Comments