A304962 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(2^(k-1)).
1, 2, 6, 18, 50, 138, 374, 994, 2610, 6778, 17414, 44346, 112034, 280970, 700038, 1733706, 4269970, 10463154, 25518198, 61962458, 149839602, 360958306, 866405702, 2072579058, 4942074082, 11748730482, 27849974598, 65837539522, 155236876018, 365125130490, 856767548022
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Conjectures of the OEIS, as of June 20, 2018.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Master's thesis, 1992. [see page 24]
- N. J. A. Sloane, Transforms
- Index entries for sequences related to partitions
- Index entries for sequences related to compositions
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add(d* 2^(d-1), d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n>1, 0, 1), add(b(n-i*j, i-1)*binomial(2^(i-1), j), j=0..n/i)) end: a:= n-> add(g(n-j)*b(j$2), j=0..n): seq(a(n), n=0..35); # Alois P. Heinz, May 22 2018 # Maple program to compute c(n) from a(n) or a(n) from c(n). with(numtheory): andrews:=proc(liste) local n,z,serie,ls,i,d,aaa; n:=nops(liste); aaa:=liste; serie:=listtoseries(aaa,z,ogf): ls:=series(ln(serie),z,n); [seq(coeff(ls,z,d),d=1..n)]; [seq(elemmobius(%,i),i=1..n-1)] end: swerdna:=proc(liste) local n,i,z; n:=nops(liste); series(convert([seq((1-z^i)^(-liste[i]),i=1..n)],`*`),z,n); [seq(coeff(%,z,i),i=0..n-1)] end: elemmobius:=proc(liste,d) local k,rep; rep:=0; for k in divisors(d) do rep:=rep+liste[k]*mobius(iquo(d,k))/iquo(d,k) od; rep end: # Here andrews() finds the c(n) and swerdna() finds the a(n) if the c(n) are known. # For ordinary partitions the c(n) are [1,1,1,1,1, ...]. # Simon Plouffe, Jun 20 2018
-
Mathematica
nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A011782(k).
Euler transform of c(n) with g.f.: -x*(-2*x^2-x+2)/(-4*x^3+2*x^2+2*x-1). - Simon Plouffe, Jun 20 2018
a(n) ~ A247003 * 2^(n-1) * exp(2*sqrt(n) - 1/2 + c) / (sqrt(Pi)*n^(3/4)), where c = Sum_{k>=2} -(-1)^k / (k*(2^k-2)) = -0.207530918644117743551169251314627032... - Vaclav Kotesovec, Sep 15 2021
Comments