cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304962 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(2^(k-1)).

Original entry on oeis.org

1, 2, 6, 18, 50, 138, 374, 994, 2610, 6778, 17414, 44346, 112034, 280970, 700038, 1733706, 4269970, 10463154, 25518198, 61962458, 149839602, 360958306, 866405702, 2072579058, 4942074082, 11748730482, 27849974598, 65837539522, 155236876018, 365125130490, 856767548022
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Convolution of the sequences A034691 and A098407.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          2^(d-1), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n>1, 0, 1),
          add(b(n-i*j, i-1)*binomial(2^(i-1), j), j=0..n/i))
        end:
    a:= n-> add(g(n-j)*b(j$2), j=0..n):
    seq(a(n), n=0..35);  # Alois P. Heinz, May 22 2018
    # Maple program to compute c(n) from a(n) or a(n) from c(n).
    with(numtheory):
    andrews:=proc(liste) local n,z,serie,ls,i,d,aaa;
       n:=nops(liste);
    aaa:=liste;
    serie:=listtoseries(aaa,z,ogf):
    ls:=series(ln(serie),z,n);
       [seq(coeff(ls,z,d),d=1..n)];
       [seq(elemmobius(%,i),i=1..n-1)]
    end:
    swerdna:=proc(liste) local n,i,z;
      n:=nops(liste);
      series(convert([seq((1-z^i)^(-liste[i]),i=1..n)],`*`),z,n);
      [seq(coeff(%,z,i),i=0..n-1)]
    end:
    elemmobius:=proc(liste,d) local k,rep;
       rep:=0;
       for k in divisors(d) do
          rep:=rep+liste[k]*mobius(iquo(d,k))/iquo(d,k)
       od;
       rep
    end:
    # Here andrews() finds the c(n) and swerdna() finds the a(n) if the c(n) are known.
    # For ordinary partitions the c(n) are [1,1,1,1,1, ...].
    # Simon Plouffe, Jun 20 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A011782(k).
Euler transform of c(n) with g.f.: -x*(-2*x^2-x+2)/(-4*x^3+2*x^2+2*x-1). - Simon Plouffe, Jun 20 2018
a(n) ~ A247003 * 2^(n-1) * exp(2*sqrt(n) - 1/2 + c) / (sqrt(Pi)*n^(3/4)), where c = Sum_{k>=2} -(-1)^k / (k*(2^k-2)) = -0.207530918644117743551169251314627032... - Vaclav Kotesovec, Sep 15 2021