A305168 Number of non-isomorphic graphs on 4n vertices whose edges are the union of two n-edge matchings.
1, 3, 9, 23, 54, 118, 246, 489, 940, 1751, 3177, 5630, 9776, 16659, 27922, 46092, 75039, 120615, 191611, 301086, 468342, 721638, 1102113, 1669226, 2508429, 3741741, 5542532, 8155720, 11925654, 17334077, 25051940, 36009468, 51491111, 73263043, 103744575
Offset: 0
Keywords
Examples
To see a(2)=9, observe that all graphs that are the union of two matchings of size n=2 are isomorphic to the union of S = {{1,2},{3,4}} and one of T= 1. {{1,2}, {3,4}} --> (2',2') 2. {{1,3}, {2,4}} --> (4') 3. {{1,5}, {3,4}} --> (2,2') 4. {{1,3}, {4,5}} --> (4) 5. {{1,2}, {5,6}} --> (1,1,2') 6. {{1,3}, {5,6}} --> (3,1) 7. {{1,5}, {3,6}} --> (2,2) 8. {{1,5}, {6,7}} --> (2,1,1) 9. {{5,6}, {7,8}} --> (1,1,1,1) Note that the partitions correspond to the bijection mentioned in the comments above.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d* (2-irem(d, 2)), d=numtheory[divisors](j)), j=1..n)/n) end: a:= n-> b(2*n): seq(a(n), n=0..40); # Alois P. Heinz, Aug 18 2018
-
Mathematica
a[n_] := Sum[PartitionsP[2k] PartitionsP[n-k], {k, 0, n}]; a /@ Range[0, 40] (* Jean-François Alcover, Nov 27 2020 *)
-
PARI
a(n) = sum(i=0, n, numbpart(2*i)*numbpart(n-i)); \\ Michel Marcus, Aug 18 2018
Formula
a(n) = [x^2n] (Product_{i>=1} 1/(1-x^i))*(Product_{j>=1} 1/(1-x^(2j))).
a(n) = Sum_{i=0..n} b(2i)*b(n-i) where b(n) is the number of partitions of n (A000041).
a(n) = A002513(2n). - Alois P. Heinz, Aug 18 2018
Comments