A305231 Numbers that are the product of some integer and its digit reversal.
0, 1, 4, 9, 10, 16, 25, 36, 40, 49, 64, 81, 90, 100, 121, 160, 250, 252, 360, 400, 403, 484, 490, 574, 640, 736, 765, 810, 900, 976, 1000, 1008, 1089, 1207, 1210, 1300, 1458, 1462, 1600, 1612, 1729, 1855, 1936, 1944, 2268, 2296, 2430, 2500, 2520, 2668, 2701
Offset: 1
Examples
12*21 = 252, so 252 is a term. 156*651 = 101556, so 101556 is a term. (It can also be written as 273*372; see A203924.)
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
Programs
-
Maple
a:= proc(n) option remember; local k, d; for k from 1+a(n-1) do for d in numtheory[divisors](k) do if k = d*(s-> parse(cat( seq(s[-i], i=1..length(s)))))(""||d) then return k fi od od end: a(1):=0: seq(a(n), n=1..60); # Alois P. Heinz, May 27 2018
-
Mathematica
a={0}; h=-1; For[k=0, k<=2701, k++, For[m=1, m<=DivisorSigma[0, k], m++, d=Divisors[k]; If[k/Part[d, m] == FromDigits[Reverse[IntegerDigits[Part[d, m]]]] && k>h , AppendTo[a, k]; h=k]]]; a (* Stefano Spezia, Jan 28 2023 *)
-
PARI
isok(n) = if (n==0, return (1), fordiv(n, d, if (n/d == fromdigits(Vecrev(digits(d))), return (1))); return (0)); \\ Michel Marcus, May 28 2018
Comments