cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305257 If pd(x) is the product of the digits of the number x and sd(x) the sum of the digits of the number x then the sequence lists all the positive numbers n for which pd(n) = sd(n) and sd(pd(n)) = pd(sd(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 123, 132, 213, 231, 312, 321, 1124, 1142, 1214, 1241, 1412, 1421, 2114, 2141, 2411, 4112, 4121, 4211, 11133, 11222, 11313, 11331, 12122, 12212, 12221, 13113, 13131, 13311, 21122, 21212, 21221, 22112, 22121, 22211, 31113, 31131, 31311, 33111
Offset: 1

Views

Author

Jaroslav Krizek, May 28 2018

Keywords

Comments

Sequence is finite with 48 terms.
Also numbers n such that pd(n) = sd(n) and simultaneously both the additive and multiplicative persistences of n are 0 or 1.
Subsequence of A128290. Intersection of A128290 and A034710.
Numbers k such that A007953(k) = A010888(k) = A007954(k) = A031347(k). - Mohammed Yaseen, Nov 12 2022

Examples

			321 -> sd(321) = 3+2+1 = 6; pd(321) = 3*2*1 = 6; pd(sd(321)) = pd(6) = 6; sd(pd(321)) = sd(6) = 6.
		

Crossrefs

Programs

  • Mathematica
    sod[n_] := Plus@@ IntegerDigits@ n; pod[n_] := Times@@ IntegerDigits@ n; Select[ Range[10^5], pod@ # == sod@ # && pod@ sod@ # == sod@ pod@ # &] (* Giovanni Resta, May 30 2018 *)
  • PARI
    pd(n) = my(d=digits(n)); factorback(d);
    alias(sd, sumdigits);
    isok(n) = my(p=pd(n), s=sd(n)); (p==s) && (sd(p) == pd(s)); \\ Michel Marcus, May 30 2018
    
  • Python
    from math import prod
    def pd(x): return prod(map(int, str(x)))
    def sd(x): return sum(map(int, str(x)))
    def ok(n): return pd(n) == sd(n) and sd(pd(n)) == pd(sd(n))
    print([k for k in range(1, 10**5) if ok(k)]) # Michael S. Branicky, Nov 12 2022