cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046005 Discriminants of imaginary quadratic fields with class number 8 (negated).

Original entry on oeis.org

95, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376, 395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651, 660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995, 1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204
Offset: 1

Views

Author

Keywords

Comments

131 discriminants in this sequence (almost certainly but not proved).

Crossrefs

Programs

  • Mathematica
    Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[6400], NumberFieldClassNumber[Sqrt[-#]] == 8 &]] (* Jean-François Alcover, Jun 27 2012 *)
  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no == 8} \\ Andrew Howroyd, Jul 20 2018
    
  • Sage
    [n for n in (1..6500) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==8] # G. C. Greubel, Mar 01 2019

A316743 Discriminants of imaginary fields whose class group has exponent 2, negated.

Original entry on oeis.org

15, 20, 24, 35, 40, 51, 52, 84, 88, 91, 115, 120, 123, 132, 148, 168, 187, 195, 228, 232, 235, 267, 280, 312, 340, 372, 403, 408, 420, 427, 435, 483, 520, 532, 555, 595, 627, 660, 708, 715, 760, 795, 840, 1012, 1092, 1155, 1320, 1380, 1428, 1435, 1540, 1848, 1995, 2280, 3003, 3315, 5460
Offset: 1

Views

Author

Jianing Song, Jul 20 2018

Keywords

Comments

This sequence lists the negated discriminants of imaginary fields whose class group is isomorphic to (C_2)^r, r > 0.
These are the negated fundamental discriminants in A133288.
Also numbers in A003644 but not in A014602. Equals A014603 union A192322 union A305416 union {5460}.

Crossrefs

Cf. Negated discriminants of imaginary fields whose class group is isomorphic to (C_2)^r: A014602 (r=0), A014603 (r=1), A192322 (r=2), A305416 (r=3).
Subsequence of A003644 and A133288.

Programs

  • PARI
    ok(n)={isfundamental(-n) && quadclassunit(-n).no > 1 && !#select(k->k<>2, quadclassunit(-n).cyc)} \\ Andrew Howroyd, Jul 20 2018
Showing 1-2 of 2 results.