A076336 (Provable) Sierpiński numbers: odd numbers n such that for all k >= 1 the numbers n*2^k + 1 are composite.
78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909, 965431, 1259779, 1290677, 1518781, 1624097, 1639459, 1777613, 2131043, 2131099, 2191531, 2510177, 2541601, 2576089, 2931767, 2931991, 3083723, 3098059, 3555593, 3608251
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, Section B21.
- C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 420.
- Paulo Ribenboim, The Book of Prime Number Records, 2nd. ed., 1989, p. 282.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 237-238.
Links
- T. D. Noe and Arkadiusz Wesolowski, Table of n, a(n) for n = 1..15000 (T. D. Noe supplied 13394 terms which came from McLean. a(1064), a(7053), and a(13397)-a(15000) from Arkadiusz Wesolowski.)
- Chris Caldwell, Riesel number
- Chris Caldwell, Sierpinski number
- Michael Filaseta, quoted by T. Ordowski, Re: Is it true? SeqFan mailing list, Jul 12 2022
- Michael Filaseta, Jacob Juillerat, and Thomas Luckner, Consecutive primes which are widely digitally delicate and Brier numbers, arXiv:2209.10646 [math.NT], 2022.
- Carrie E. Finch-Smith and R. Scottfield Groth, Arbitrarily Long Sequences of Sierpiński Numbers that are the Sum of a Sierpiński Number and a Mersenne Number, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.4. See p. 22.
- Yves Gallot, A search for some small Brier numbers, 2000.
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Anatoly S. Izotov, A Note on Sierpinski Numbers, Fibonacci Quarterly (1995), pp. 206-207.
- G. Jaeschke, On the Smallest k Such that All k*2^N + 1 are Composite, Mathematics of Computation, Vol. 40, No. 161 (Jan., 1983), pp. 381-384.
- J. McLean, Searching for large Sierpinski numbers [Cached copy]
- J. McLean, Brier Numbers [Cached copy]
- Don Reble, Proofs concerning S3 and S4
- Carlos Rivera, Problem 29. Brier numbers, The Prime Puzzles and Problems Connection.
- Payam Samidoost, Dual Sierpinski problem search page [Broken link?]
- Payam Samidoost, Dual Sierpinski problem search page [Cached copy]
- Payam Samidoost, 4847 [Broken link?]
- Payam Samidoost, 4847 [Cached copy]
- W. Sierpiński, Sur un problème concernant les nombres k * 2^n + 1, Elem. Math., 15 (1960), pp. 73-74.
- Seventeen or Bust, A Distributed Attack on the Sierpinski Problem
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
- Jeremiah T. Southwick, Two Inquiries Related to the Digits of Prime Numbers, Ph. D. Dissertation, University of South Carolina (2020).
- Eric Weisstein's World of Mathematics, Sierpiński Number of the Second Kind
- Wikipedia, Sierpiński number.
Comments