cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305540 Triangle read by rows: T(n,k) is the number of achiral loops (necklaces or bracelets) of length n using exactly k different colors.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 3, 1, 6, 6, 1, 10, 21, 12, 1, 14, 36, 24, 1, 22, 93, 132, 60, 1, 30, 150, 240, 120, 1, 46, 345, 900, 960, 360, 1, 62, 540, 1560, 1800, 720, 1, 94, 1173, 4980, 9300, 7920, 2520, 1, 126, 1806, 8400, 16800, 15120, 5040, 1, 190, 3801, 24612, 71400, 103320, 73080, 20160, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320
Offset: 1

Views

Author

Robert A. Russell, Jun 04 2018

Keywords

Comments

The number of achiral necklaces is equivalent to the number of achiral bracelets.

Examples

			The triangle begins with T(1,1):
1;
1,   1;
1,   2;
1,   4,     3;
1,   6,     6;
1,  10,    21,     12;
1,  14,    36,     24;
1,  22,    93,    132,     60;
1,  30,   150,    240,    120;
1,  46,   345,    900,    960,     360;
1,  62,   540,   1560,   1800,     720;
1,  94,  1173,   4980,   9300,    7920,    2520;
1, 126,  1806,   8400,  16800,   15120,    5040;
1, 190,  3801,  24612,  71400,  103320,   73080,   20160;
1, 254,  5796,  40824, 126000,  191520,  141120,   40320;
1, 382, 11973, 113652, 480060, 1048320, 1234800,  745920, 181440;
1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880;
For a(4,2)=4, the achiral loops are AAAB, AABB, ABAB, and ABBB.
		

Crossrefs

Odd rows are A019538.
Even rows are A172106.
Columns 1-6 are A057427, A027383, A056489, A056490, A056491, and A056492.

Programs

  • Mathematica
    Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] + StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 15}, {k, 1, Ceiling[(n + 1)/2]}] // Flatten
  • PARI
    T(n, k) = (k!/2)*(stirling(floor((n+1)/2), k, 2)+stirling(ceil((n+1)/2), k, 2));
    tabf(nn) = for(n=1, nn, for (k=1, ceil((n+1)/2), print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 02 2018

Formula

T(n,k) = (k!/2) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)), where S2(n,k) is the Stirling subset number A008277.
T(n,k) = 2*A273891(n,k) - A087854(n,k).
G.f. for column k>1: (k!/2) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2). - Robert A. Russell, Sep 26 2018