A305540 Triangle read by rows: T(n,k) is the number of achiral loops (necklaces or bracelets) of length n using exactly k different colors.
1, 1, 1, 1, 2, 1, 4, 3, 1, 6, 6, 1, 10, 21, 12, 1, 14, 36, 24, 1, 22, 93, 132, 60, 1, 30, 150, 240, 120, 1, 46, 345, 900, 960, 360, 1, 62, 540, 1560, 1800, 720, 1, 94, 1173, 4980, 9300, 7920, 2520, 1, 126, 1806, 8400, 16800, 15120, 5040, 1, 190, 3801, 24612, 71400, 103320, 73080, 20160, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320
Offset: 1
Examples
The triangle begins with T(1,1): 1; 1, 1; 1, 2; 1, 4, 3; 1, 6, 6; 1, 10, 21, 12; 1, 14, 36, 24; 1, 22, 93, 132, 60; 1, 30, 150, 240, 120; 1, 46, 345, 900, 960, 360; 1, 62, 540, 1560, 1800, 720; 1, 94, 1173, 4980, 9300, 7920, 2520; 1, 126, 1806, 8400, 16800, 15120, 5040; 1, 190, 3801, 24612, 71400, 103320, 73080, 20160; 1, 254, 5796, 40824, 126000, 191520, 141120, 40320; 1, 382, 11973, 113652, 480060, 1048320, 1234800, 745920, 181440; 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880; For a(4,2)=4, the achiral loops are AAAB, AABB, ABAB, and ABBB.
Crossrefs
Programs
-
Mathematica
Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] + StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 15}, {k, 1, Ceiling[(n + 1)/2]}] // Flatten
-
PARI
T(n, k) = (k!/2)*(stirling(floor((n+1)/2), k, 2)+stirling(ceil((n+1)/2), k, 2)); tabf(nn) = for(n=1, nn, for (k=1, ceil((n+1)/2), print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 02 2018
Formula
T(n,k) = (k!/2) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)), where S2(n,k) is the Stirling subset number A008277.
G.f. for column k>1: (k!/2) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2). - Robert A. Russell, Sep 26 2018
Comments