cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107877 Column 1 of triangle A107876.

Original entry on oeis.org

1, 1, 2, 7, 37, 268, 2496, 28612, 391189, 6230646, 113521387, 2332049710, 53384167192, 1348601249480, 37291381915789, 1120914133433121, 36406578669907180, 1271084987848923282, 47487293697623885913, 1890771531272515677250, 79947079338974990793060
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005, Apr 10 2007

Keywords

Comments

Also number of subpartitions of partition consisting of first n-1 triangular numbers; e.g., a(4) = subp([1,3,6]) = 37. - Franklin T. Adams-Watters, Jun 26 2006
Number of length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(0)=0 and s(k) <= s(k-1)+k, see Fxtbook link and example. - Joerg Arndt, Apr 30 2011
Number of Dyck paths whose ascent lengths are exactly {1,2,...,n+1}; for example, the a(2) = 2 paths are uduuduuudddd and uduudduuuddd. - David Scambler, May 30 2012
Number of types of cells of a fine mixed subdivision of the Tesler flow polytope. - Alejandro H. Morales, Oct 11 2017

Examples

			1 = 1*(1-x)^1 + 1*x*(1-x)^2 + 2*x^2*(1-x)^4 + 7*x^3*(1-x)^7 + 37*x^4*(1-x)^11 + 268*x^5*(1-x)^16 + 2496*x^6*(1-x)^22 + ...
Also equals the final term in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated n+1 times, starting with a '1' in row 0, as illustrated by:
1;
1, 1;
1, 2,  2,  2;
1, 3,  5,  7,  7,  7,   7;
1, 4,  9, 16, 23, 30,  37,  37,  37,  37,  37;
1, 5, 14, 30, 53, 83, 120, 157, 194, 231, 268, 268, 268, 268, 268, 268; ...
Restricted growth strings: a(0)=1 corresponds to the empty string; a(1)=1 to [0];
a(2) = 2 to [00] and [01]; a(3)=7 to
  1:  [ 0 0 0 ],
  2:  [ 0 0 1 ],
  3:  [ 0 0 2 ],
  4:  [ 0 1 0 ],
  5:  [ 0 1 1 ],
  6:  [ 0 1 2 ],
  7:  [ 0 1 3 ].
[_Joerg Arndt_, Apr 30 2011]
		

References

  • R. P. Stanley, Enumerative Combinatorics volume 1, 2nd edition, Cambridge University Press, 2011, Ch. 3

Crossrefs

Programs

  • Maple
    b:= proc(n, y) option remember; `if`(n=0, 1, add(
          b(n-1, y+i-n), i=max(1, n-y)..n*(n-1)/2+1-y))
        end:
    a:= n-> b(n+1, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 26 2016
    # second Maple program:
    a:= n-> LinearAlgebra:-Determinant(Matrix(n,(i,j)->
            binomial(binomial(n+1-i,2)+1,i-j+1))):
    seq(a(n), n=0..25); # Alejandro H. Morales, Aug 31 2017
  • Mathematica
    a[ n_, k_: 1, j_: 1] := If[ n < 2, Boole[n >= 0], a[n, k, j] = Sum[a[n - 1, i, j + 1], {i, k + j}]]; (* Michael Somos, Nov 26 2016 *)
  • PARI
    {a(n)=polcoeff(1-sum(k=0,n-1,a(k)*x^k*(1-x+x*O(x^n))^(1+k*(k+1)/2)),n)}

Formula

G.f.: 1 = Sum_{k>=0} a(k)*x^k*(1-x)^(1 + k*(k+1)/2).
G.f.: 1 = Sum_{k>=0} a(k)*x^k/(1+x)^((k+1)*(k+2)/2).
From Benedict W. J. Irwin, Nov 26 2016: (Start)
Conjecture: a(n) can be expressed with a series of nested sums,
a(3) = Sum_{i=1..2} i+2,
a(4) = Sum_{i=1..2} Sum_{j=1..i+2} j+3,
a(5) = Sum_{i=1..2} Sum_{j=1..i+2} Sum_{k=1..j+3} k+4,
a(6) = Sum_{i=1..2} Sum_{j=1..i+2} Sum_{k=1..j+3} Sum_{l=1..k+4} l+5. (End)
Determinantal formula: a(n) = Det(A) where A is the n X n matrix with entries A(i,j) = binomial(binomial(n+1-i,2)+1,i-j+1). This follows by the formula by MacMahon (see EC1 Ex 3.63) for the number of such subpartitions. - Alejandro H. Morales, Aug 31 2017

A127496 Triangle, read by rows of n*(n+1)/2 + 1 terms, generated by the following rule: start with a single '1' in row n=0; subsequently, row n+1 equals the partial sums of row n with the final term repeated n+1 more times at the end.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 7, 7, 7, 7, 1, 4, 9, 16, 23, 30, 37, 37, 37, 37, 37, 1, 5, 14, 30, 53, 83, 120, 157, 194, 231, 268, 268, 268, 268, 268, 268, 1, 6, 20, 50, 103, 186, 306, 463, 657, 888, 1156, 1424, 1692, 1960, 2228, 2496, 2496, 2496, 2496, 2496, 2496, 2496
Offset: 0

Views

Author

Paul D. Hanna, Jan 16 2007

Keywords

Comments

Last term in each row forms A107877, the number of subpartitions of the partition consisting of the triangular numbers.

Examples

			To obtain row 4 from row 3:
  [1, 3, _5, _7, _7, _7, __7];
take partial sums with final term '37' repeated 4 more times:
  [1, 4, _9, 16, 23, 30, _37, _37, _37, _37, _37].
To obtain row 5, take partial sums of row 4 with the final term '268' repeated 5 more times at the end:
  [1, 5, 14, 30, 53, 83, 120, 157, 194, 231, 268, 268,268,268,268,268].
Triangle begins:
  1;
  1, 1;
  1, 2, 2, 2;
  1, 3, 5, 7, 7, 7, 7;
  1, 4, 9, 16, 23, 30, 37, 37, 37, 37, 37;
  1, 5, 14, 30, 53, 83, 120, 157, 194, 231, 268, 268, 268, 268, 268, 268;
  1, 6, 20, 50, 103, 186, 306, 463, 657, 888, 1156, 1424, 1692, 1960, 2228, 2496, 2496, 2496, 2496, 2496, 2496, 2496;
Final term in rows forms A107877 which satisfies the g.f. 1/(1-x) = 1 + 1*x*(1-x) + 2*x^2*(1-x)^3 + ...
		

Crossrefs

Cf. A107877 (leading edge); diagonals: A127497, A127498.

Programs

  • Mathematica
    nxt[h_] :=Module[{c = Accumulate[h]}, Join[c, PadRight[{}, c[[2]], c[[-1]]]]]; Join[{1},Flatten[NestList[nxt,{1,1},5]]] (* Harvey P. Dale, Mar 10 2020 *)
  • PARI
    T(n,k)=if(n<0 || k<0 || k>n*(n+1)/2,0,if(k==0,1, if(k<=n*(n-1)/2,T(n,k-1)+T(n-1,k),T(n,k-1))))

A305605 G.f. A(x) satisfies: [x^k] A(x) / (1-x)^n = 0 for k = n*(n+1)/2 + 1 through k = (n+1)*(n+2)/2 for n >= 0.

Original entry on oeis.org

1, 0, -1, 0, -2, 2, 0, -7, 14, -7, 0, -37, 111, -111, 37, 0, -268, 1072, -1608, 1072, -268, 0, -2496, 12480, -24960, 24960, -12480, 2496, 0, -28612, 171672, -429180, 572240, -429180, 171672, -28612, 0, -391189, 2738323, -8214969, 13691615, -13691615, 8214969, -2738323, 391189, 0, -6230646, 49845168, -174458088, 348916176, -436145220, 348916176, -174458088, 49845168, -6230646, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2018

Keywords

Examples

			G.f.: A(x) = 1 - x^2 - 2*x^4 + 2*x^5 - 7*x^7 + 14*x^8 - 7*x^9 - 37*x^11 + 111*x^12 - 111*x^13 + 37*x^14 - 268*x^16 + 1072*x^17 - 1608*x^18 + 1072*x^19 - 268*x^20 - 2496*x^22 + 12480*x^23 - 24960*x^24 + 24960*x^25 - 12480*x^26 + 2496*x^27 - 28612*x^29 + 171672*x^30 + ...
The table of coefficients of x^k in A(x) / (1-x)^n, for n >= 0, begins:
[1, 0, -1,  0,  -2,   2,   0,   -7,  14,    -7,    0, -37, 111,-111,   37, ...];
[1, 1,  0,  0,  -2,   0,   0,   -7,   7,     0,    0, -37,  74, -37,    0, ...];
[1, 2,  2,  2,   0,   0,   0,   -7,   0,     0,    0, -37,  37,   0,    0, ...];
[1, 3,  5,  7,   7,   7,   7,    0,   0,     0,    0, -37,   0,   0,    0, ...];
[1, 4,  9, 16,  23,  30,  37,   37,  37,    37,   37,   0,   0,   0,    0, ...];
[1, 5, 14, 30,  53,  83, 120,  157,  194,  231,  268, 268, 268, 268,  268, ...];
[1, 6, 20, 50, 103, 186, 306,  463,  657,  888, 1156,1424,1692,1960, 2228, ...];
[1, 7, 27, 77, 180, 366, 672, 1135, 1792, 2680, 3836,5260,6952,8912,11140, ...]; ...
illustrating the occurrence of zeros.
Note that the initial terms of the rows in the above table forms the rows of irregular triangle A127496.
TRIANGULAR FORM.
This sequence may be arranged into a triangle like so:
1,
0, -1,
0, -2, 2,
0, -7, 14, -7,
0, -37, 111, -111, 37,
0, -268, 1072, -1608, 1072, -268,
0, -2496, 12480, -24960, 24960, -12480, 2496,
0, -28612, 171672, -429180, 572240, -429180, 171672, -28612,
...
in which the g.f. of the rows equal -x * A107877(n) * (1-x)^(n-1) for n > 0.
		

Crossrefs

Programs

  • PARI
    /* Informal code to generate terms */
    {A=[1, 0]; for(i=1, 465, A=concat(A, 0); m=floor(sqrt(2*#A-2) + 1/2); A[#A] = -polcoeff( Ser(A)/(1-x +x*O(x^#A))^(m-1), #A-1) ; print1(#A, ", ")); A}
    /* Show that the definition is satisfied: */
    for(n=0, sqrtint(2*#A)-1, print1(n": "); for(k=n*(n+1)/2+1, (n+1)*(n+2)/2, print1(polcoeff( Ser(A)/(1-x +x*O(x^#A))^n , k), ", ")); print(""))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies:
(1) A(x) = 1 - x*Sum_{n>=1} A107877(n) * x^(n*(n+1)/2) * (1-x)^(n-1).
(2) [x^k] A(x) / (1-x)^n = 0 for k = n*(n+1)/2 + 1 through (n+1)*(n+2)/2, n >= 0.
(3) [x^k] A(x) / (1-x)^n = A107877(n) for k = n*(n-1)/2 through n*(n+1)/2, n >= 0.
(4) [x^k] A(x) / (1-x)^n = A127496(n,k) for k = 0..n*(n+1)/2 for n >= 0.
(5) [x^n] A(x) / (1-x)^n = A127497(n) for n >= 0.
FORMULAS INVOLVING TERMS.
a(n*(n+1)/2) = 0 for n >= 1.
a(n*(n-1)/2) = (-1)^n * A107877(n) for n >= 0.
a(n*(n+1)/2 + 1) = -A107877(n) for n >= 0.
a(n) = [x^n] (1+x)^n * G(x) where G(x) is the g.f. of A305601, which is the inverse binomial transform of this sequence.
Showing 1-3 of 3 results.