A305622 Triangle read by rows: T(n,k) is the number of chiral pairs of rows of n colors with exactly k different colors.
0, 0, 1, 0, 2, 3, 0, 6, 18, 12, 0, 12, 72, 120, 60, 0, 28, 267, 780, 900, 360, 0, 56, 885, 4188, 8400, 7560, 2520, 0, 120, 2880, 20400, 63000, 95760, 70560, 20160, 0, 240, 9000, 93120, 417000, 952560, 1164240, 725760, 181440, 0, 496, 27915, 409140, 2551440, 8217720, 14817600, 15120000, 8164800, 1814400, 0, 992, 85233, 1748220, 14802900, 64614960, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1
Examples
The triangle begins: 0; 0, 1; 0, 2, 3; 0, 6, 18, 12; 0, 12, 72, 120, 60; 0, 28, 267, 780, 900, 360; 0, 56, 885, 4188, 8400, 7560, 2520; 0, 120, 2880, 20400, 63000, 95760, 70560, 20160; 0, 240, 9000, 93120, 417000, 952560, 1164240, 725760, 181440; ... For T(3,2)=2, the chiral pairs are AAB-BAA and ABB-BBA. For T(3,3)=3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Crossrefs
Programs
-
Maple
with(combinat): a:=(n,k)->(factorial(k)/2)* (Stirling2(n,k)-Stirling2(ceil(n/2),k)): seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Sep 27 2018
-
Mathematica
Table[(k!/2) (StirlingS2[n, k] - StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
-
PARI
T(n,k) = (k!/2) * (stirling(n,k,2) - stirling(ceil(n/2),k,2)); for (n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Sep 27 2018
Formula
T(n,k) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)) where S2(n,k) is the Stirling subset number A008277.
G.f. for column k: k! x^k / (2*Product_{i=1..k}(1-ix)) - k! (x^(2k-1)+x^(2k)) / (2*Product{i=1..k}(1-i x^2)). - Robert A. Russell, Sep 26 2018
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A293500(n, i). - Andrew Howroyd, Sep 13 2019
Comments