A305623 Number of chiral pairs of rows of n colors with exactly 3 different colors.
0, 0, 3, 18, 72, 267, 885, 2880, 9000, 27915, 85233, 259308, 783972, 2366007, 7122405, 21422160, 64364400, 193307955, 580316313, 1741791348, 5226945372, 15684152847, 47058746925, 141189342840, 423593188200, 1270831465995, 3812595048993, 11437991207388, 34314376250772, 102943948309287, 308833455491445, 926503630549920, 2779517334002400, 8338565015656035, 25015720816575273, 75047214375967428
Offset: 1
Examples
For a(3) = 3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
Links
- Simon Plouffe, Conjectures of the OEIS, as of June 20, 2018.
Crossrefs
Programs
-
Mathematica
k=3; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
-
PARI
a(n) = 3*(stirling(n,3,2)-stirling(ceil(n/2),3,2)); \\ Altug Alkan, Sep 26 2018
Formula
a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=3 colors used and where S2(n,k) is the Stirling subset number A008277.
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=3 colors used.
G.f.: 3*x^3*(5*x^2-x-1)/(-36*x^6+30*x^5+24*x^4-25*x^3-x^2+5*x-1). - Simon Plouffe, Jun 20 2018
Comments