A317017
Expansion of Product_{k>=1} 1/(1 - x^k)^((3*k+1)*binomial(k+2,3)/4).
Original entry on oeis.org
1, 1, 8, 33, 126, 441, 1571, 5338, 17900, 58359, 187134, 588966, 1826537, 5580784, 16831549, 50135506, 147650112, 430187724, 1240908651, 3545808444, 10042128414, 28201458999, 78567720054, 217225969695, 596254164090, 1625343030654, 4401332943214, 11843216471115, 31674767502610
Offset: 0
-
a:=series(mul(1/(1-x^k)^((3*k+1)*binomial(k+2,3)/4),k=1..100),x=0,29): seq(coeff(a,x,n),n=0..28); # Paolo P. Lava, Apr 02 2019
-
nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^((3 k + 1) Binomial[k + 2, 3]/4), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 28; CoefficientList[Series[Exp[Sum[x^k (1 + 2 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (3 d + 1)/24, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]
A317019
Expansion of Product_{k>=1} 1/(1 - x^k)^(k*binomial(k+2,3)).
Original entry on oeis.org
1, 1, 9, 39, 155, 570, 2131, 7599, 26667, 90996, 305144, 1004173, 3254123, 10385884, 32704819, 101678860, 312435675, 949498206, 2855953018, 8507079361, 25108844890, 73468004480, 213201630328, 613871526178, 1754365814430, 4978113020152, 14029639217532, 39281646364737
Offset: 0
-
a:=series(mul(1/(1-x^k)^(k*binomial(k+2,3)),k=1..100),x=0,28): seq(coeff(a,x,n),n=0..27); # Paolo P. Lava, Apr 02 2019
-
nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^(k Binomial[k + 2, 3]), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 27; CoefficientList[Series[Exp[Sum[x^k (1 + 3 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^3 (d + 1) (d + 2)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]
A317020
Expansion of Product_{k>=1} 1/(1 - x^k)^((5*k-1)*binomial(k+2,3)/4).
Original entry on oeis.org
1, 1, 10, 45, 185, 710, 2766, 10270, 37444, 132765, 462327, 1579563, 5311361, 17584084, 57414594, 185032557, 589183035, 1854974066, 5778722817, 17823440534, 54458411332, 164917654587, 495219323844, 1475145786950, 4360576440676, 12796007418881, 37287660835368, 107930276062786
Offset: 0
-
a:=series(mul(1/(1-x^k)^((5*k-1)*binomial(k+2,3)/4),k=1..100),x=0,28): seq(coeff(a,x,n),n=0..27); # Paolo P. Lava, Apr 02 2019
-
nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^((5 k - 1) Binomial[k + 2, 3]/4), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 27; CoefficientList[Series[Exp[Sum[x^k (1 + 4 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (5 d - 1)/24, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]
A317021
Expansion of Product_{k>=1} 1/(1 - x^k)^((3*k-1)*binomial(k+2,3)/2).
Original entry on oeis.org
1, 1, 11, 51, 216, 861, 3477, 13367, 50377, 184667, 664484, 2345230, 8142476, 27825576, 93750686, 311682789, 1023547782, 3322634928, 10669887669, 33916213669, 106776876109, 333111724130, 1030264525744, 3160359629535, 9618807643826, 29057370625281, 87153154537437
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(add(
(3*d-1)*binomial(d+2, 3)/2*d, d=numtheory
[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 19 2018
-
nmax = 26; CoefficientList[Series[Product[1/(1 - x^k)^((3 k - 1) Binomial[k + 2, 3]/2), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 26; CoefficientList[Series[Exp[Sum[x^k (1 + 5 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (3 d - 1)/12, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 26}]
A305654
a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^n)).
Original entry on oeis.org
1, 1, 4, 14, 65, 323, 1890, 12002, 83901, 630818, 5081318, 43546333, 395422430, 3788368227, 38151667046, 402516707510, 4436230390977, 50948789415297, 608433141666219, 7540823673023319, 96826154085714992, 1285991546051286085, 17640769457638701839, 249602608552024560609
Offset: 0
-
Table[SeriesCoefficient[Exp[Sum[x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
Table[SeriesCoefficient[Product[1/(1 - x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]
Showing 1-5 of 5 results.
Comments