cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305721 Crystal ball sequence for the lattice C_7.

Original entry on oeis.org

1, 99, 1765, 14407, 74313, 284075, 880685, 2340495, 5529233, 11905267, 23784309, 44673751, 79684825, 136030779, 223619261, 355747103, 549905697, 828705155, 1220925445, 1762702695, 2498858857, 3484382923, 4786071885, 6484339631, 8675201969, 11472445971, 15009991829
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2018

Keywords

Comments

Partial sums of A019563.

Crossrefs

Programs

  • GAP
    b:=7;; List([0..30],n->Sum([0..b],k->Binomial(2*b,2*k)*Binomial(n+k,b))); # Muniru A Asiru, Jun 09 2018
  • Mathematica
    Array[Sum[Binomial[14, 2 k] Binomial[# + k, 7], {k, 0, 7}] &, 27, 0] (* Michael De Vlieger, Jun 11 2018 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,99,1765,14407,74313,284075,880685,2340495},30] (* Harvey P. Dale, May 16 2023 *)
  • PARI
    {a(n) = sum(k=0, 7, binomial(14, 2*k)*binomial(n+k, 7))}
    
  • PARI
    Vec((1 + x)*(1 + 90*x + 911*x^2 + 2092*x^3 + 911*x^4 + 90*x^5 + x^6) / (1 - x)^8 + O(x^40)) \\ Colin Barker, Jun 09 2018
    

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8), for n > 7.
a(n) = Sum_{k = 0..7} binomial(14, 2*k)*binomial(n+k, 7).
G.f.: (1 + x)*(1 + 90*x + 911*x^2 + 2092*x^3 + 911*x^4 + 90*x^5 + x^6) / (1 - x)^8. - Colin Barker, Jun 09 2018
From Peter Bala, Mar 12 2024: (Start)
Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 2*ln(2) - 289/210 = 1/(99 - 3/(107 - 60/(123 - 315/(147 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*7^2 - ...))))).
E.g.f.: exp(x)*(1 + 98*x + 1568*x^2/2! + 9408*x^3/3! + 26880*x^4/4! + 39424*x^5/5! + 28672*x^6/6! + 8192*x^7/7!).
Note that -T(14, i*sqrt(x)) = 1 + 98*x + 1568*x^2 + 9408*x^3 + 26880*x^4 + 39424*x^5 + 28672*x^6 + 8192*x^7, where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. See A008310.
Row 7 of A142992. (End)