cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A303603 a(n) is the maximum distance between primes in Goldbach partitions of 2n, or 2n if there are no Goldbach partitions of 2n.

Original entry on oeis.org

0, 0, 0, 2, 4, 2, 8, 10, 8, 14, 16, 14, 20, 18, 16, 26, 28, 26, 24, 34, 32, 38, 40, 38, 44, 42, 40, 50, 48, 46, 56, 58, 56, 54, 64, 62, 68, 70, 68, 66, 76, 74, 80, 78, 76, 86, 84, 82, 60, 94, 92, 98, 100, 98, 104, 106, 104, 110, 108, 106, 96, 102, 100, 90, 124, 122, 128, 126, 124, 134, 136, 134, 132
Offset: 1

Views

Author

Marcin Barylski, Apr 26 2018

Keywords

Comments

The Goldbach Strong Conjecture is true if and only if a(n) = 2n for some n.
Terms are always even numbers because primes present in Goldbach partitions of n > 4 are odd and n = 4 has just one partition (2+2) where difference is 0.
Conjecture: Only first terms are 0 and all further terms are bigger than 0. Excluding a(1), a(n) = 0 iff the only Goldbach partition of 2n is n+n.

Examples

			a(1) = 0 for coherence with other related sequences.
a(2) = 0 because 2 * 2 = 4 = 2 + 2 and max_diff = 2 - 2 = 0.
a(8) = 10 because 2 * 8 = 16 = 5 + 11 = 3 + 13 and max_diff = 13 - 3 = 10.
		

Crossrefs

Cf. A002372, A002375, A047949, A066285 (minimum distance), A305883.

Programs

  • Mathematica
    a[1]=a[2]=0;
    a[n_]:=Module[{p=3},While[PrimeQ[2*n-p]!=True,p=NextPrime[p]];2*(n-p)];
    a/@Range[73] (* Ivan N. Ianakiev, Jun 27 2018 *)
  • PARI
    a(n) = if (n==1, 0, forprime(p=2, , if (isprime(2*n-p), return (2*n-2*p)))); \\ Michel Marcus, Jul 02 2018

Formula

a(n) = 2 * A047949(n) if A047949(n) > 0 for n >= 2; a(n) = 2n if A047949(n) = -1. - Alois P. Heinz, Jun 01 2020
Showing 1-1 of 1 results.