cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305899 Filter sequence related to factorization ("prime") signatures of Stern polynomials when factored over Z.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 2, 4, 5, 6, 2, 9, 2, 10, 4, 4, 4, 11, 2, 4, 4, 8, 2, 9, 2, 6, 6, 4, 2, 12, 3, 4, 4, 6, 2, 8, 2, 8, 4, 4, 2, 13, 2, 4, 9, 14, 2, 9, 2, 6, 4, 9, 2, 15, 2, 4, 6, 6, 2, 9, 2, 12, 4, 4, 2, 13, 4, 4, 4, 8, 2, 13, 2, 6, 4, 4, 2, 16, 2, 6, 6, 6, 2, 9, 2, 8, 9
Offset: 1

Views

Author

Antti Karttunen, Jul 01 2018

Keywords

Comments

Restricted growth sequence transform of A284011.

Crossrefs

Cf. also A304751.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    pfps(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2] * 'x^(primepi(f[i, 1])-1)); };
    A284010(n) = { if(!bitand(n, (n-1)), 0, my(p=0, f=vecsort(factor(pfps(n))[, 2], ,4)); prod(i=1, #f, (p=nextprime(p+1))^f[i])); }
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
    A284011(n) = A284010(A260443(n));
    v305899 = rgs_transform(vector(up_to, n, A284011(n)));
    A305899(n) = v305899[n];