A306022 Stirling transform of partitions numbers (A000041).
1, 1, 3, 10, 38, 163, 774, 4006, 22376, 133951, 854402, 5775948, 41190317, 308651432, 2422315371, 19856073597, 169596622997, 1506139073454, 13879704561038, 132488897335228, 1307829322689944, 13330635710335512, 140118664473276174, 1516899115597189064
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..571
- Eric Weisstein's World of Mathematics, Stirling Transform.
Programs
-
Maple
a:= n-> add(combinat[numbpart](j)*Stirling2(n, j), j=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Jun 17 2018
-
Mathematica
Table[Sum[StirlingS2[n, k]*PartitionsP[k], {k, 0, n}], {n, 0, 25}]
-
PARI
a(n) = sum(k=0, n, stirling(n, k, 2)*numbpart(k)); \\ Michel Marcus, Jun 17 2018
Formula
a(n) = Sum_{k=0..n} Stirling2(n,k)*A000041(k).