cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306368 a(n) = numerator of (n + 3)*(n + 4)/((n + 1)*(n + 2)).

Original entry on oeis.org

6, 10, 5, 21, 28, 12, 45, 55, 22, 78, 91, 35, 120, 136, 51, 171, 190, 70, 231, 253, 92, 300, 325, 117, 378, 406, 145, 465, 496, 176, 561, 595, 210, 666, 703, 247, 780, 820, 287, 903, 946, 330, 1035, 1081, 376, 1176, 1225, 425, 1326, 1378, 477, 1485, 1540, 532, 1653, 1711, 590
Offset: 0

Views

Author

Peter Bala, Feb 14 2019

Keywords

Comments

If P(x) and Q(x) are coprime integral polynomials such that Q(n) > 0 for n >= 0 then the sequence of numerators of the rational numbers P(n)/Q(n) for n >= 0 and the sequence of denominators of P(n)/Q(n) for n >= 0 are both quasi-polynomial in n. In fact, there exists a purely periodic sequence b(n) such that numerator(P(n)/Q(n)) = P(n)/b(n) and denominator(P(n)/Q(n)) = Q(n)/b(n). Here we take P(n) = (n + 3)*(n + 4) and Q(n) = (n + 1)*(n + 2).

Crossrefs

Programs

  • GAP
    List([0..100],n->NumeratorRat((n+3)*(n+4)/((n+1)*(n+2)))); # Muniru A Asiru, Feb 25 2019
    
  • Maple
    seq((n + 3)*(n + 4)/gcd((n + 3)*(n + 4), (n + 1)*(n + 2)), n = 0..100);
  • Mathematica
    Table[((n+3)(n+4))/((n+1)(n+2)),{n,0,60}]//Numerator (* or *) LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{6,10,5,21,28,12,45,55,22},60] (* Harvey P. Dale, Mar 28 2020 *)
  • PARI
    a(n) = numerator((n + 3)*(n + 4)/((n + 1)*(n + 2))); \\ Michel Marcus, Feb 26 2019

Formula

O.g.f.: (x^8 + x^7 - 3*x^5 - 2*x^4 + 3*x^3 + 5*x^2 + 10*x + 6)/((1 - x)^3*(x^2 + x + 1)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n >= 9.
a(n) = (n + 3)*(n + 4)/b(n), where (b(n))n>=0 is the purely periodic sequence [2, 2, 6, 2, 2, 6, ...] with period 3.
a(n) = (n + 3)*(n + 4)/gcd((n + 3)*(n + 4), (n + 1)*(n + 2)).
a(3*n) = (3*n + 3)*(3*n + 4)/2 = A081266(n+1).
a(3*n+1) = (3*n + 4)*(3*n + 5)/2 = A060544(n+2).
a(3*n+2) = (n + 2)*(3*n + 5)/2 = A000326(n+2).
Sum_{n>=0} 1/a(n) = 2*log(3) - 2*Pi/(3*sqrt(3)). - Amiram Eldar, Aug 11 2022