cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306672 Partial sums of the even Lucas numbers (A014448).

Original entry on oeis.org

2, 6, 24, 100, 422, 1786, 7564, 32040, 135722, 574926, 2435424, 10316620, 43701902, 185124226, 784198804, 3321919440, 14071876562, 59609425686, 252509579304, 1069647742900, 4531100550902, 19194049946506, 81307300336924, 344423251294200, 1459000305513722, 6180424473349086
Offset: 0

Views

Author

Rigoberto Florez, Mar 04 2019

Keywords

Examples

			L(0) + L(3) = 6;
L(0) + L(3) + L(6) = 24;
L(0) + L(3) + L(6) + L(9) = 100.
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n + 3) - 5*a(n + 2) + 3*a(n + 1) + a(n), a(0) = 2, a(1) = 6, a(2) = 24},a(n),remember):
    map(f, [$0..60]); # Robert Israel, Mar 05 2019
  • Mathematica
    Table[(Lucas[3n+2]-1)/2+1,{n,0,25}]
    Accumulate[Select[LucasL[Range[0,100]],EvenQ]] (* or *) LinearRecurrence[ {5,-3,-1},{2,6,24},30] (* Harvey P. Dale, Jan 18 2021 *)
  • PARI
    L(n) = fibonacci(n+1)+fibonacci(n-1);
    a(n) = sum(k=0, n, L(3*k)); \\ Michel Marcus, Mar 05 2019
    
  • Perl
    use ntheory ":all"; sub a { vecsum(map{lucasv(1,-1,3*$)}0..$[0]) } # Dana Jacobsen, Mar 05 2019

Formula

a(n) = L(0) + L(3) + L(6) + L(9) + ... + L(3n), L(n) = Lucas numbers A000032.
a(n) = Sum_{i=0..n} L(3i).
a(n) = (L(3*n+2)-1)/2+1.
G.f.: -2*(2*x-1)/((x-1)*(x^2+4*x-1)). - Alois P. Heinz, Mar 04 2019