A306672 Partial sums of the even Lucas numbers (A014448).
2, 6, 24, 100, 422, 1786, 7564, 32040, 135722, 574926, 2435424, 10316620, 43701902, 185124226, 784198804, 3321919440, 14071876562, 59609425686, 252509579304, 1069647742900, 4531100550902, 19194049946506, 81307300336924, 344423251294200, 1459000305513722, 6180424473349086
Offset: 0
Keywords
Examples
L(0) + L(3) = 6; L(0) + L(3) + L(6) = 24; L(0) + L(3) + L(6) + L(9) = 100.
Links
- Robert Israel, Table of n, a(n) for n = 0..1593
- Index entries for linear recurrences with constant coefficients, signature (5,-3,-1).
Programs
-
Maple
f:= gfun:-rectoproc({a(n + 3) - 5*a(n + 2) + 3*a(n + 1) + a(n), a(0) = 2, a(1) = 6, a(2) = 24},a(n),remember): map(f, [$0..60]); # Robert Israel, Mar 05 2019
-
Mathematica
Table[(Lucas[3n+2]-1)/2+1,{n,0,25}] Accumulate[Select[LucasL[Range[0,100]],EvenQ]] (* or *) LinearRecurrence[ {5,-3,-1},{2,6,24},30] (* Harvey P. Dale, Jan 18 2021 *)
-
PARI
L(n) = fibonacci(n+1)+fibonacci(n-1); a(n) = sum(k=0, n, L(3*k)); \\ Michel Marcus, Mar 05 2019
-
Perl
use ntheory ":all"; sub a { vecsum(map{lucasv(1,-1,3*$)}0..$[0]) } # Dana Jacobsen, Mar 05 2019
Formula
a(n) = L(0) + L(3) + L(6) + L(9) + ... + L(3n), L(n) = Lucas numbers A000032.
a(n) = Sum_{i=0..n} L(3i).
a(n) = (L(3*n+2)-1)/2+1.
G.f.: -2*(2*x-1)/((x-1)*(x^2+4*x-1)). - Alois P. Heinz, Mar 04 2019