cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A373369 a(n) = gcd(A001414(n), A059975(n)), where A001414 and A059975 are fully additive with a(p) = p and a(p) = p-1, respectively.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2024

Keywords

Crossrefs

Cf. A001414, A059975, A345452 (positions of even terms).

Programs

A167344 Totally multiplicative sequence with a(p) = (p-1)*(p+1) = p^2-1 for prime p.

Original entry on oeis.org

1, 3, 8, 9, 24, 24, 48, 27, 64, 72, 120, 72, 168, 144, 192, 81, 288, 192, 360, 216, 384, 360, 528, 216, 576, 504, 512, 432, 840, 576, 960, 243, 960, 864, 1152, 576, 1368, 1080, 1344, 648, 1680, 1152, 1848, 1080, 1536, 1584, 2208, 648, 2304, 1728
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = f[k,1]^2-1); factorback(f); \\ Michel Marcus, Jan 31 2021

Formula

Multiplicative with a(p^e) = ((p-1)*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-1)*(p(k)+1))^e(k).
a(n) = A003958(n) * A003959(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 - 2)) = 1.884261780923861906728291280746835210118330549695678826316037127832097567... - Vaclav Kotesovec, Sep 20 2020
a(n) = A340323(n) * A340368(n). - Antti Karttunen, Jan 31 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - 1/(p^3 - p^2 + 1)) = 0.2487962948... . - Amiram Eldar, Nov 12 2022
Showing 1-2 of 2 results.