cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354298 a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.

Original entry on oeis.org

1, 2, 11, 76, 137, 7534, 97943, 1469144, 24975449, 94906706, 9965204131, 229199695012, 5729992375301, 9100576125478, 897316805972131, 563093542209232, 4589775462547450033, 5539384178936577626, 5943759223998947792699, 46361321947191792783052, 9504070999174317520525661
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
		

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL:
    for n from 1 to 100 do
      S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
      R:= R, numer(S);
    od:
    R; # Robert Israel, Jan 10 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Numerator
    nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Numerator // Rest
    Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Numerator

Formula

Numerators of coefficients in expansion of sqrt(Pi*x*exp(-x)/2) * erfi(sqrt(x/2)) / (1 - x).

A354299 a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.

Original entry on oeis.org

1, 3, 15, 105, 189, 10395, 135135, 2027025, 34459425, 130945815, 13749310575, 316234143225, 7905853580625, 12556355686875, 1238056670725875, 776918153694375, 6332659870762850625, 7642865361265509375, 8200794532637891559375, 63966197354575554163125, 13113070457687988603440625
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
		

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL:
    for n from 1 to 100 do
      S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
      R:= R, denom(S);
    od:
    R; # Robert Israel, Jan 10 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Denominator
    nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Denominator // Rest
    Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Denominator

Formula

Denominators of coefficients in expansion of sqrt(Pi*x*exp(-x)/2) * erfi(sqrt(x/2)) / (1 - x).

A334578 Double subfactorials: a(n) = (-1)^floor(n/2) * n!! * Sum_{i=0..floor(n/2)} (-1)^i/(n-2*i)!!.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 29, 76, 233, 685, 2329, 7534, 27949, 97943, 391285, 1469144, 6260561, 24975449, 112690097, 474533530, 2253801941, 9965204131, 49583642701, 229199695012, 1190007424825, 5729992375301, 30940193045449, 154709794133126, 866325405272573
Offset: 0

Views

Author

Ryan Brooks, May 06 2020

Keywords

Examples

			a(5) = (5*3*1)*(1/(1) - 1/(3*1) + 1/(5*3*1)) = 15-5+1 = 11.
		

Crossrefs

Even bisection gives A000354.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, [0$2, 1$2][n+3],
          (n-1)*a(n-2)+(n-2)*a(n-4))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, May 06 2020
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n a[n-2] + (-1)^Floor[n/2]}, a, {n, 0, 32}] (* Jean-François Alcover, Nov 27 2020 *)

Formula

a(n) = n*a(n-2) + (-1)^floor(n/2).
a(2n) = A000354(n).
From Ryan Brooks, Oct 25 2020: (Start)
a(2n)/A006882(2n) ~ 1/sqrt(e) = A092605.
a(2n+1)/A006882(2n+1) ~ sqrt(Pi/(2*e))*erfi(1/sqrt(2)) = A306858. (End)

A368794 a(n) = (2*n-1)!! * Sum_{k=1..n} (-1)^(k-1)/(2*k-1)!!.

Original entry on oeis.org

0, 1, 2, 11, 76, 685, 7534, 97943, 1469144, 24975449, 474533530, 9965204131, 229199695012, 5729992375301, 154709794133126, 4486584029860655, 139084104925680304, 4589775462547450033, 160642141189160751154, 5943759223998947792699, 231806609735958963915260
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a001147(n) = prod(k=1, n, 2*k-1);
    a(n) = a001147(n)*sum(k=1, n, (-1)^(k-1)/a001147(k));

Formula

a(0) = 0; a(n) = (2*n-1)*a(n-1) + (-1)^(n-1).
From Peter Bala, Feb 10 2024: (Start)
a(n) = (2*n - 2)*a(n-1) + (2*n - 3)*a(n-2) with a(0) = 0 and a(1) = 1.
The double factorial numbers (2*n-1)!! = A001147(n) satisfy the same recurrence, leading to the generalized continued fraction expansion Limit_{n -> oo} a(n)/(2*n-1)!! = Sum_{k >= 1} (-1)^(k-1)/(2*k-1)!! = 0.7247784590... = 1 - 1/(3 + 3/(4 + 5/(6 + 7/(8 + 9/(10 + ... ))))). (End)
Showing 1-4 of 4 results.