cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307018 Total number of parts of size 3 in the partitions of n into parts of size 2 and 3.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 1, 2, 4, 2, 4, 6, 4, 6, 9, 6, 9, 12, 9, 12, 16, 12, 16, 20, 16, 20, 25, 20, 25, 30, 25, 30, 36, 30, 36, 42, 36, 42, 49, 42, 49, 56, 49, 56, 64, 56, 64, 72, 64, 72, 81, 72, 81, 90, 81, 90, 100, 90, 100, 110, 100, 110, 121, 110, 121, 132
Offset: 0

Views

Author

Andrew Ivashenko, Mar 19 2019

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,0,0,1,0,1,2,1];; for n in [9..80] do a[n]:=a[n-2]+2*a[n-3] -2*a[n-5]-a[n-6]+a[n-8]; od; a; # G. C. Greubel, Apr 03 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); [0,0,0] cat Coefficients(R!( x^3/((1-x^2)*(1-x^3)^2) )); // G. C. Greubel, Apr 03 2019
    
  • Mathematica
    LinearRecurrence[{0,1,2,0,-2,-1,0,1}, {0,0,0,1,0,1,2,1}, 80] (* G. C. Greubel, Apr 03 2019 *)
    Table[(6n(2+n)-5-27(-1)^n+8(4+3n)Cos[2n Pi/3]-8Sqrt[3]n Sin[2n Pi/3])/216,{n,0,66}] (* Stefano Spezia, Apr 21 2022 *)
  • PARI
    my(x='x+O('x^80)); concat([0,0,0], Vec(x^3/((1-x^2)*(1-x^3)^2))) \\ G. C. Greubel, Apr 03 2019
    
  • Sage
    (x^3/((1-x^2)*(1-x^3)^2)).series(x, 80).coefficients(x, sparse=False) # G. C. Greubel, Apr 03 2019
    

Formula

a(n+2) = A321202(n) - A114209(n+1).
a(3n+1) = A002620(n+2).
a(3n+2) = A002620(n+1).
a(3n+3) = A002620(n+2).
G.f.: x^3/((1+x)*(1+x+x^2)^2*(1-x)^3). - Alois P. Heinz, Mar 19 2019
a(n) = a(n-2) + 2*a(n-3) - 2*a(n-5) - a(n-6) + a(n-8). - G. C. Greubel, Apr 03 2019
a(n) = (6*n*(2 + n) + 8*(4 + 3*n)*cos(2*n*Pi/3) - 8*sqrt(3)*n*sin(2*n*Pi/3) - 5 - 27*(-1)^n)/216. - Stefano Spezia, Apr 21 2022
From Ridouane Oudra, Nov 24 2024: (Start)
a(n) = (7*n/2 - 7*n^2/2 - 9*floor(n/2) + (6*n+4)*floor(2*n/3) + 4*floor(n/3))/18.
a(n) = A008133(n) - A069905(n-1).
a(n) = A002620(A008611(n)). (End)

Extensions

More terms from Alois P. Heinz, Mar 19 2019