cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307026 Number of (undirected) paths in the m X n king graph (triangle read by rows with m = 1..n and n = 1..).

Original entry on oeis.org

0, 1, 30, 3, 235, 5148, 6, 1448, 96956, 6014812, 10, 7909, 1622015, 329967798, 57533191444, 15, 40674, 25281625, 16997993692, 9454839968415, 4956907379126694, 21, 202719, 375341540, 834776217484, 1482823362091281, 2480146959625512771, 3954100866385811897908
Offset: 1

Views

Author

Eric W. Weisstein, Mar 20 2019

Keywords

Comments

Paths of length zero are not counted here. - Seiichi Manyama, Dec 15 2020

Examples

			   0;
   1,    30;
   3,   235,     5148;
   6,  1448,    96956,     6014812;
  10,  7909,  1622015,   329967798, 57533191444;
  15, 40674, 25281625, 16997993692, ...;
		

Crossrefs

Row n=2..5 give: A339750, A339751, A358626, A358920.
Cf. A288033 (n X n king graph), A288518.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A(start, goal, n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal)
        return paths.len()
    def A307026(n, k):
        m = k * n
        s = 0
        for i in range(1, m):
            for j in range(i + 1, m + 1):
                s += A(i, j, n, k)
        return s
    print([A307026(n, k) for n in range(1, 8) for k in range(1, n + 1)])  # Seiichi Manyama, Dec 15 2020

Formula

T(1, n) = binomial(n, 2).
T(n, n) = A288033(n).

Extensions

a(20)-a(28) from Seiichi Manyama, Dec 15 2020